

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001095

								1	1	٦		
Registration No:												
Total	Number of Pages : 3			ר ח	г ·		·1		10		B.TECH	
4 th Semester Regular Examination-April-May 2019 BEEPC4020 – CONTROL SYSTEMS-I												
(Regulations 2017) Common to AEIE / ECE,EEE Branch												
Time : 3 Hours Maximum : 100 Marks												
Answer ALL Questions The figures in the right hand margin indicate marks												
The figures in the right hand margin indicate marks. PART – A: (Multiple Choice Questions) 10 x 2=20 Mark												
Q.1.	Answer <u>All</u> Questio		. (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	iipie e	nonce Q	4050101	10) 10					
a	A position control system is a/an								[CO1] [PO1]			
	 a. Automatic regulating system b) Process control system c) Servo mechanism d. Stochastic control system 											
b	· · · · · · · · · · · · · · · · · · ·										[CO1] [PO1]	
a. Process control system b. Servo mechanism c. Cascade control system												
	d. Aut	omatic regula	ting sys	stem								
с	For the system shown below, the transfer function $C(s)/R(s)$ is equal to									[CO1] [PO2]		
	R + + + + +					с						
			<u>0</u> (+1)									
	T	T										
			<u>s</u>									
	a. $\frac{10}{2}$	-10 b. $-s$	10		c	0	d. –	10				
L												
d	The transfer function of a system is $10/(1+s)$. The steady state error to unit step input when operated as a unit feedback system is:								[CO2] [PO1]			
	a. 10 b.	.0 c. 1/11	d. ∞	_								
e	For a second order system as ζ increased from zero, the response becomes a. progressively more oscillatory b. progressively less oscillatory c. zero d.infinity								[CO3] [PO1]			
f	It is given that G(s)=									-dback What	[CO3] [PO2]	
	is the order and type	· · ·			Joratoa II	reiosea	loop (vitii ui	ity ice	Adduck. What		
		b.2 and 3 c.			nd 0							
	4.1.5											
g	$G(s) = \frac{1+s}{s(1+0.5s)}$. The	corner freque	ncies ai	re							[CO2] [PO2]	
	a. 0 and 1	b. 0 and 2	c. 0 and	-1 d. 1	and 2							
h	The polor plot of a a	load loop av	atom wi	the street	nafan fum	otion	G in	duarra	for		[CO2] [PO1]	
11	h The polar plot of a closed loop system with a transfer function $\frac{G}{1+GH}$ is drawn for a. G b. 1+GH c. GH d. $\frac{G}{1+GH}$								[002][101]			
	a. G). I+GH c. C	$\frac{1}{1}$ H d. $\frac{1}{1}$	+GH								
i	If the gain of the open loop system is doubled, the gain margin								[CO2] [PO1]			
	a. is not affected b.gets doubled c. becomes half d.becomes one-fourth											
j	If stability error for step input and speed of response be the criteria for design, what controller [C would you recommend?]								[CO4] [PO1]			
		oller b. PD co	ontrolle	r c.PI c	ontroller	d.PID	contro	ller				

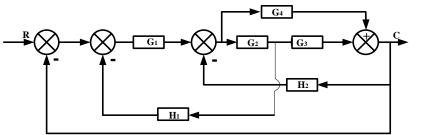
PART – B: (Short Answer Questions) 2x10=20 Marks

Q.2. Answer <u>ALL</u> questions

a	What is the function of a tachogenerator? Write down the transfer function of a tachogenerator?	[CO1] [PO1]
b	What are the effects of negative feedback control on sensitivity to noise and parameter variation	[CO1] [PO1]
	of a system?	
c	Write the Mason's gain formula for a signal flow graph and state the various terms in it.	[CO1] [PO1]
d	Draw the signal flow graph for a given Transfer function: $T(s) = 4/s^2 + 6s + 11$	[CO1] [PO2]
e	When a second order control system is subjected to a unit step input, the values of $\zeta=0.5$ and $\omega_n=6$ rad/s. Determine the rise time and peak time.	[CO2] [PO1]
f	In root locus technique, what is the difference between the breakaway point and asymptotic point.	[CO3] [PO1]
g	Define Nyquist Contour.	[CO2] [PO1]
h	Briefly explain gain margin & phase margin.	[CO2] [PO1]
i	Differentiate between constant M-circles and N-circles.	[CO2] [PO1]
j	What are the effects of integral control action?	[CO4] [PO1]
	PART – C: (Long Answer Questions) 15x4=60 Marks	

Q.3 Answer <u>ALL</u> questions

a. For the system represented by the following equations, find the transfer function [CO1] [PO2] X(s)/U(s) by using Mason's gain formula and verify the result using block diagram reduction technique. $x = x_1 + Au$ 10 Marks


$$\dot{x}_1 = -A_1 x_1 + x_2 + B_1 u$$

$$\dot{x}_2 = -A_2 x_1 + B_2 u$$

b. Explain the construction and working of a synchro.

OR

c. Using block diagram reduction techniques, find the closed loop transfer function of the system whose block diagram is given below?

10 Marks

5 Marks

[CO1] [PO1]

[CO1] [PO2]

[CO2] [PO1]

[CO2] [PO2]

- d. Explain the working principle of A.C Servomotor used for low power application. 5 Marks [CO1] [PO1] **Q.4**
- a. Discuss the time response of a second order control system by clearing defining the terms a) Rise time b) Maximum overshoot and Peak time c) Settling time. Draw a neat 10 Marks diagram to explain these terms.
- b. A unity negative feedback control system has an open loop tranfer function consisting 5 Marks of two poles, two zeros and a variable gain K. The zeros are located at -2 and -1; and the poles are at 0.1 and +1. Using Routh's stability criterion, determine the range of values of K, for which the closed loop system has 0,1 or 2 poles in the right half splane.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

R4A19001095

[CO4] [PO2]

[CO4] [PO2]

5 Marks

c. What is steady state error of a control system? Define and explain various steady state error coefficients. Discuss about the various steady state error coefficients for type-0 10 Marks system.
d. A unity feedback position control system has a forward path transfer function G(s)= 5 Marks [CO2] [PO1] K/s. for unit step input, compute the value of K that minimizes ISE.

Q.5

a. Explain the correlation between time and frequency Response 5 Marks [CO3] [PO1]
b. A feedback control system has forward path gain G(s)=4/s(s-1) and feedback path gain 10 Marks [CO3] [PO2] H(s)= (s+1). Draw the Nyquist diagram for the system and assess the stability of the closed loop system.

OR

- c. Write a short note on constant M-Circles a for unity feedback system.
 Draw the log-magnitude asymptotic plot for the transfer function,
 d. G(a)= 2000s/(a+10)(a+100) And find (a) the gain prosequer frequencies and (b) the
- d. G(s)= 2000s/(s+10)(s+100). And find (a) the gain crossover frequencies, and (b) the frequencies at 3-dB attenuation.

Q.6

a. Construct a state model for the system described by the transfer function

$$\frac{Y(s)}{U(s)} = \frac{s^{3} + 3s + 4}{s^{3} + 2s^{2} + 3s + 2}$$
 10 Marks

b. Test the observability of the system described by

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \qquad \qquad \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$$

OR

c. Derive the effect of PD control on damping ratio, peak overshoot, steady state error and rise time of a second order unity feedback system.
 d. State the Ziegler-Nichols rules for controller tuning.
 =0==