
GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022 R4A1900							19001(017						
]	Registration No:													
Total	Number of Pages : 3	<u> </u>								1				B.TECH
	0	4 th Sen	nester 1	Regul	lar Ex	amina	tion-A	April-I	May 2	2019				
		BCHPC4								ATIO	Ν			
		(Regula	ations	2017)	CHE	MICA	L EN						
Time : 3 Hours Maximum : 100 Marks						larks								
						LL Qu				1				
The figures in the right hand margin indicate marks. PART – A: (Multiple Choice Questions) 10 x 2=20 Mark														
		-	A: (MI	litiple	e Choi	ce Qu	estions	5) IU X	2=20	Mar	<u>'K</u>			
	Q.1. Answer <u>All</u> Q	-						_						
a.	A mixture of FeO and			in air	and is	found	to gain	n 5 %	in its i	mass.	What	is the		[C01]
composition of FeO in initial mass?								[PO1]						
b.	a. 30% b. 25% c. 20% b. 35%							0/	[CO2]					
υ.	b. How much Super Phosphate fertilizer can be made from one tonne of calcium phosphate of 93.5 purity? The reaction is $Ca_3(PO_4)_2 + 2 H_2SO_4 \rightarrow CaH_4(PO_4)_2 + 2 Ca_2SO_4$?						/0	[CO2] [PO1]						
a. 1200 kg b. 1594 kg c. 1683 kg d. 1358 kg														
c.	A bypass stream for a process is useful because											[CO3]		
	A. it improves conv					uct yie	ld							[PO2]
	C. it removes impu					etter co		over th	ie pro	cess				
d.	d. Kopp's rule deals with;								[CO4]					
	A. heat capacities H													[PO1]
e.	At eutectic point the	number of ph	ases p	resent	is; A	. one	B. two	C. th	ree I	D. fou	ır			[CO2]
c		C (1 1)												[PO1]
f.	The heat capacities of			D :			•							[CO4]
	A. decrease with in C. temperature has					e with		ise in i	tempe	rature				[PO1]
g.	Recycle stream is put							he nro	duct y	vield	C bet	ter cont	trol	[CO3]
8.	over the process D				ments	D. IIIC	icase i	ne pre	uuer :	yıcıu	C. 001		101	[PO2]
h.	For a gas phase crack				at 300)°C, th	e Gibł	os free	energ	gy of	the rea	action a	t this	[CO4]
	temperature is ΔG° =													[PO3]
	ideal. The universal													
	equilibrium is: A. 0.				. 0.80									
i.	A liquid mixture of ethanol and water is flowing as inlet stream P into a stream splitter. It is split into												[CO1]	
	two streams, Q and R	, as shown in	the fig	gure b	elow.		_							[PO1]
					1	0	∕ _							

The flowrate of P, containing 30 mass % of ethanol, is 100 kg/h. What is the least number of additional specification(s) required to determine the mass flowrates and compositions (mass %) of the two exit streams? A. 0 B. 1 C. 2 D. 3

j. Water is heated at atmospheric pressure from 40°C to 80°C using two different processes. In process I, the heating is done by a source at 80°C. In process II, the water is first heated from 40°C [PO2] to 60°C by a source at 60°C, and then from 60°C to 80°C by another source at 80°C. Identify the correct statement.

A. Enthalpy change of water in process I is greater than enthalpy change in process II

- B. Enthalpy change of water in process II is greater than enthalpy change in process I
- C. Process I is closer to reversibility

OI LINEIRIAN

D. Process II is closer to reversibility

R4A19001017

PART – B: (Short Answer Questions)10x2=20 Marks

Q.2. Answer <u>ALL</u> questions

a. b.	What is the weight of 1 liter of methane under standard conditions? What do you mean by vapour pressure of a liquid? Mention assumptions used in the derivation of Clausius-Clapeyron equation.		[CO1] [PO1] [CO3] [PO1]				
c.	How relative humidity does differs from % humidity.		[CO4] [PO2]				
d.	State the basic principle underlying steam distillation.		[CO2] [PO1]				
e.	A solution of acetic acid in water contains 20% acetic acid by weight. Find the molality of the solution.		[CO1] [PO1]				
f. g.	Write short note on Wet- and dry-bulb thermometry. Humid air at a temperature of 75° C, 1.1 bar and 30% relative humidity is fed to a process at a rate 1000 m ³ /hr. Determine the molar flow rate of water. VP of water at 75° C is 38.5 kPa.		[CO4] [PO1] [CO4] [PO2]				
h.	State Roult's law and Henry's law.		[CO3] [PO1]				
i.	Give the difference between theoretical and actual flame temperature, heat of formation and heat of combustion.		[CO2] [PO1]				
j.	Explain recycle, bypass and purging.		[CO3] [PO1]				
	PART – C: (Long Answer Questions) 15x4=60 Marks						
	Answer <u>ALL</u> questions						
Q.3							
a.	A natural gas has the following composition by volume in percentage, methane -85 , ethane -6 , propane -4 , butane -1 , hydrogen sulphide -1 , nitrogen -3 . Determine the composition by wt %, the average molecular weight, the density at 30°C and one atmosphere in kg/m ³ , the theoretical oxygen demand treating hydrogen sulphide as non-combustible and total carbon content.	10	[CO2] [PO1]				
b.	A compound whose molecular weight is 103 analyses as following (percentage weight basis):	5	[CO1] [PO1]				
	OR						
c.	Carburated water gas has the following composition by volume in percentage H_2 - 35.2, CH_4 – 14.8, C_2H_4 – 12.8, CO_2 – 1.5, CO – 33.9 and rest nitrogen. The gas is available at 500°C and 3 atm (g) pressure. Find the molar volume using Vander wall's equation of state. Given the critical properties as:	9	[CO1] [PO1]				
	Gas: H_2 CH ₄ C ₂ H ₄ CO ₂ CO N ₂						
	T _c , ^o K: 33.2 190.55282.36 304.19 132.92 126.2						
	P _c ,atm: 12.8 45.44 49.66 72.85 34.52 33.5						
d.	Octane is burnt with 10% excess air. Calculate: (i) Air/fuel ratio by weight. (ii) Air/fuel ratio by volume. (iii) Weight of dry exhaust gas formed per unit weight of fuel.	6	[CO2] [PO1]				
Q. 4							
a.	A solvent recovery system delivers a gas saturated with Benzene vapor which analyses on a Benzene free basis as CO - 15%, O_2 - 4%, and N_2 – 81%. The gas is at 21.1°C and 100 kPa. It is compressed to 506 kPa and cooled to 21.1°C after compression. How many kg of Benzene are	7	[CO3] [PO2]				
	condensed by this process per 1000m ³ of original mixture? Take VP of Benzene 10 kPa.						
b.	Moist air contains 0.0109 kg water vapour per cubic meter of the mixture at 300 K and 101.3 kPa. Calculate: (a) the relative saturation, (b) the absolute humidity, (C) the percent saturation, (d) the temperature to which the mixture be heated so that its percent saturation becomes 10%.	8	[CO4] [PO1]				
c.	OR A mixture of acetone vapour and nitrogen gas at 101.3 kPa and 310 K contains acetone vapour		[CO4] [PO3]				
U.	to the extent that it exerts a partial pressure of 15 kPa. The vapour pressure of acetone in kPa is	8					
	given by the Antoine equation: $\ln P^S = 14.5463 - \frac{2940.46}{T - 49.19}$, where temperature is in K.						
	Determine the following:						
(i) The weight fraction of acetone in the mixture, (ii) The absolute humidity, (iii) The molal							
	saturation humidity, (iv) The absolute saturation humidity.						
d.	Bottled liquid gas containing n-Butane (50 mol %), Propane (45 mol %) and Ethane (5 mol %) with vanor pressures at 20° C in her as 3.4 ± 10.8 . 46.6 respectively sold for household use		[CO3] [PO3]				
	with vapor pressures at 30° C in bar as 3.4, 10.8, 46.6 respectively sold for household use. Determine the pressure of the system and the equilibrium vapor composition at 30° C.	7					

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001017

Q.5	5		
a.	A drier is fed with wet solid to reduce the moisture content from 80% to 15%. The product leaving the drier is admitted to an oven which further brings down the moisture to 2%. If the drier can handle 1000 kg of wet solid per hour, calculate:(i) The weight of water evaporated in the drier and in the oven per hour.(ii) The percentage of original water that is removed in the drier and the oven.	8	[CO2] [PO1]
b.	An aqueous solution of Na ₂ CO ₃ contains 15% carbonate by weight. 80% of the carbonate is recovered as Na ₂ CO ₃ .10H ₂ O by evaporation of water and subsequent cooling to 278 K. The solubility of Na ₂ CO ₃ at 278 K is 9% (weight). On the basis of 100 kg of solution treated, determine the following: (a) the quantity of crystal formed (b) the amount of water evaporated.	7	[CO1] [PO2]
	OR		
с.	The spent acid from a nitrating process contains 33% H ₂ SO ₄ , 36% HNO ₃ and 31% water by weight. This acid is to be strengthened by the addition of concentrated sulphuric acid containing 95% H ₂ SO ₄ and concentrated nitric acid containing 78% HNO ₃ . The strengthened mixed acid is to contain 40% H ₂ SO ₄ and 43% HNO ₃ . Calculate the quantities of spent and concentrated acids that should be mixed together to yield 1500 kg of the desired mixed acid.	6	[CO2] [PO1]
d.	Carbon monoxide and hydrogen reacts to give methanol: $CO + 2H_2 \rightarrow CH_3OH$. The conversion of CO entering the reactor is only 20%. A feed stream consisting of 33% CO, 66.5% H ₂ and 0.5% CH ₄ is mixed with a recycle stream and sent to a reactor. The methanol leaving the reactor is separated and the unconverted gases are recycled. To prevent the accumulation of CH ₄ and keep its concentration in the recycle stream at 3%, a portion of the recycled stream is blown off. For 100 moles of fresh feed, determine the following: (a) The moles of recycle stream (b) The moles of purge stream (c) The moles of methanol		[CO2] [PO2]
	produced	9	
Q.6	*	-	
a.	A magnetite ore containing 100% Fe_3O_4 is subjected to reduction by pure carbon in an externally heated retort. 95% of the Fe_3O_4 present is reduced to the metallic state while the remaining 5% is converted to FeO, according to the reaction. $Fe_3O_4 + 4C \rightarrow 3Fe + 4CO$ (i) $Fe_3O_4 + C \rightarrow 3FeO + CO$ (ii) The amount of carbon to be charged is 300% in excess of that required according to the eqn. (i). The reactants enter at a temperature of $250^{\circ}C$ and the products, both the solids and the gas leave at a temperature of $950^{\circ}C$. Estimate the heat requirements for the process based on 100 kg of magnetite charged. Following data are available:	15	[CO2] [PO3]
	Specific heat kcal/kg $^{\circ}$ C,		
	Fe ₃ O ₄ – 0.18, FeO – 0.18, Fe – 0.13, C – 0.30, CO – 0.27. Standard heat of formation, ΔH_f^{0} at 25 ⁰ C in kcal/g mol		
	$Fe_3O_4(s) = -267$, FeO (s) = -64.3, CO (g) = -26.4		
	OR		
c.	 The heat capacity of carbon dioxide is given by the following relation C_P = 26.540 + 42.454 * 10⁻³ T - 14.298 * 10⁻⁶T² where C_p is in Kj/kmol; K and T is in K. (a) How much heat is required to heat 1 kg of CO₂ from 300 K to 1000 K? (b) Obtain the relation expressing the heat capacity in kcal/kmol °C and temperature in °C. 	7	[CO2] [PO3]
d.	Hydrogen gas is burned in an adiabatic reactor with two times the theoretical quantity of air, both air and hydrogen being at 298 K initially. What will be the temperature of the reaction products? The standard heat of formation of gaseous water is -241.826 kJ/mol. The heat capacities (kJ/kmol K) of the gases are given below: Water vapour: $C_P = 30.475 + 9.652 * 10^{-3} T + 1.189 * 10^{-6} T^2$ Nitrogen: $C_P = 27.034 + 5.815.454 * 10^{-3} T - 0.2889 * 10^{-6} T^2$ Oxygen: $C_P = 25.611 + 13.260 * 10^{-3} T - 4.2077 * 10^{-6} T^2$	8	[CO2] [PO2]
	==0==		