

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001097

Registration No:													
Total N	Number of Pages	: 2								B.	ГЕСН		
4 th Semester Regular Examination-April-May 2019													
BBTPC4040 – BIOCHEMICAL REACTION ENGINEERING													
(Regulations 2017) Biotech Branch													
Time : 3 Hours Maximum : 100 Marks Answer ALL Questions													
The figures in the right hand margin indicate marks.													
PART – A: (Multiple Choice Questions) 10 x 2=20 Mark													
Q.1. Answer <u>All</u> Questions.													
a	If 100 moles of hydrogen fed to a reactor with oxygen for the production of 80 moles of [CO1][PO2									[CO1][PO2]			
	water, the amount of oxygen required is moles.												
_	a). 80 b) 60 c) 40 d) 20												
b	The temperature measured by keeping dry the bulb of a thermometer is									[CO1][PO1]			
0	a) less than DBT b) more than DBT c) more than WBT d) less than WBT Molal humidity $= - \times A$ becaute humidity										[CO2][PO1]		
c	Molal humidity = $_$ × Absolute humidity. a) 18/29 b) 29/18 c) 18 d) 29												
d													
	a) adiabatic reaction b) isothermal reaction c) exothermic reaction d)endothermic reaction									ermic reaction	[CO2][PO1]		
e	For obtaining the	-		m concer	ntratio	n vs. t	ime d	ata by	v assu	ming the order	[CO2][PO1]		
	of reaction, the m												
	a) integral analys) differe	ntial ana	lysis m	nethod	c) bo	th inte	egral a	and differential			
f	methods d) nor A zero order rea		R) with	rate cor	netant 1		ure in	n a hat	ch re	actor Find the	[CO2][PO2]		
1													
	time required to achieve 50 % conversion with initial concentration of reactant 10 mol/lit. a) 10 b) 5 c) 1.0 d) 0.5												
g	For gas phase rea		-			-		s.			[CO2][PO1]		
	a) PFR b)MFR c)both i and ii d)none of these												
h For a reaction whose rate expression is $-r_A = 3.123 C_A^{1.75}$, the volume of PFR required times the volume of MFR for a fixed conversion.										[CO2][PO2]			
		b) 1.0 c)1.			1001510	11.							
i	Double time of c	, ,	,		owth r	ate).					[CO3][PO1]		
	a) 0.893 b) 0.693 c) 0.493 d)0.293												
j	For autocatalytic reaction is best option for continuous process. a) batch reactor b) PFR c)MFR d) recycle reactor								[CO2][PO1]				
	a) bat	ch reactor b)) PFR c)	MFR d) 1	recycle	reacto	or						
		PART – I	R• (Shor	t Answe	r Oue	stions) 2x1()-20 N	Mark	e			
Q.2.	Answer <u>ALL</u> q				I Que	Stions	/ =/110	 01	·141 IX	0			
a	What is the diff		een disti	llation ar	nd evap	oratio	n oper	ration	?		[CO1][PO1]		
b	Define absolute humidity and molal humidity.								[CO1][PO1]				
c										[CO1][PO2]			
	components have the specific heat of 10, 20, and 30 kcal/kg.K for H_2 , N_2 , and O_2												
d	respectively, cal		pmix•								[CO2][PO1]		
e	Define rate of reaction. Rate of reaction is a function of and								[CO2][PO1]				
f	Define Arrhenius equation for reaction rate constant.									[CO2][PO2]			
g										[CO3][PO2]			
h	Define Michaelis-Menten (K_m) constant. [CO2									[CO2][PO2]			
i	Define standard										[CO2][PO1]		
j	j Define limiting and excess reactant. [CO1][PO2]									[CO1][PO2]			

R4A19001097

PART – C: (Long Answer Questions) 15x4=60 Marks

	TART C. (Long Answer Questions) 1544–00 Marks							
Q.3	3							
a.	What is the amount of water evaporated and thick liquor produced when 10,000 kg/hr aqueous feed solution of 10 % solid (by weight) is concentrated to 40 % solid (by weight) ?	3	[CO1][PO1]					
b.	Derive the expression for the rate of product formation for the reversible uncompetitive enzyme inhibition and show the result in Line-Weaver-Burk plot.	12	[CO3][PO2]					
	OR							
c.	Derive the expression for the rate of product formation for the reversible competitive enzyme inhibition and show the result in Line-Weaver-Burk plot.	10	[CO3][PO2]					
d.	Calculate the heat of reaction at 298.15 K of the following reaction:		[CO1][PO1]					
$C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$								
	Data:							
	Component ΔH^{o}_{C} , (kJ/mol)	5						
	C ₂ H ₆ -1560.69							
	C ₂ H ₄ -1411.2							
	H ₂ -285.83							
Q.4	4							
a.	Derive Michaelis-Menten equation for the enzyme catalyzed reaction.	7	[CO3][PO2]					
b.	Explain the factors affecting the enzyme activity.	8	[CO3][PO1]					
	OR							
c.	Draw a Psychrometric chart and explain its importance.	8	[CO1][PO2]					
d.	Explain the different phases of cell growth.	7	[CO3][PO1]					
Q.5								
Q. . a.		[CO2][PO2]						
а.	Derive an expression for C_{Rmax} , in a series reaction of $A \rightarrow R \rightarrow S$, with the rate constants for first order reactions K_1 and K_2 are 5 and 2 min ⁻¹ respectively.	12						
b.	Find the maximum time for C_{Rmax} , in a series reaction of $A \rightarrow R \rightarrow S$, with the rate	3	[CO2][PO1]					
	constants for first order reactions K_1 and K_2 are 5 and 2 min ⁻¹ respectively.	3						
	OR I J							
c.	Explain the volume comparison of CSTR and PFR with the help of $1/(-r_A)$ vs. X _A plot	10	[CO3][PO2]					
	and V_{MFR}/V_{PFR} vs. 1-X _A plot, for +ve and 0 order reactions.	10][]					
d.	Draw a plot of $1/(-r_A)$ vs. X_A for -ve order reaction and comment on volume required	-	[CO3][PO1]					
	by MFR and PFR for a fixed X_A .	5						
Q.6	•							
a.	Derive an expression relating the volume of PFR and conversion and show in $1/(-r_A)$	0	[CO3][PO1]					
	vs. X _A plot.	8	[]					
b.	A zero order reaction (A \rightarrow R) with rate constant 10 occurs in a plug flow reactor.		[CO2][PO1]					
0.	Find the volume required to achieve 90 % conversion with initial concentration of	7	[00]][101]					
	reactant 100 mol/lit and volumetric flow rate of reactant 25 lit/min.							
OR								
c.			[CO3][PO1]					
.	Derive the performance equation of a recycle reactor.	10						
d.	Show the performance equation of a recycle reactor in $1/(-r_A)$ vs X _A .	5	[CO3][PO1]					
		5						

==0==