

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001062

1	Registration No:]	
	Number of Pages : 3								J	B.TECH
Total	Number of Lages.		emester Reg	ular Exa	minatio	n-April-N	Aav 20	19		D.ILCII
			BCHPC 4					17		
			(Regulation							
Time	: 3 Hours			,	,			Maxim	um : 100 Marks	5
			Ar	nswer AL	L Quest	ions				
		The figu	res in the	right ha	ind mar	gin ind	icate	marks		
		PART – A								
Q.1.	Answer <u>All</u> Questio				-	·				
a			componen	ts in a bir	nary mix	ture in w	hich th	ney are	in equimolar	[CO1] [PO1]
	The molar average velocity of the components in a binary mixture in which they are in equimolar [0 counter diffusion is									
	(a) equal to the mass average velocity (b) zero (c) always negative (d) always positive									
b	Which of the following is a probable value of D_{AB} for CO_2 -N ₂ binary at 50 °C, 2 atm?								[CO1] [PO1]	
	(a) $20 \text{ cm}^2/\text{s}$ (b) 2.2									
с	The breathing process within the lungs involves (a) diffusion of A through non-diffusing B (b) equimolar counter diffusion									[CO1] [PO1]
L.	(c) multicomponent	·						~~~~		
d	Under which of the column?	tonowing co	nations the	gas-phas	se drivin	g force v	viii be	constar	it along the	[CO2] [PO1]
		G and m-1	(c) $I/G = m$	u (d) Nor	he of the	ahove				
e	(a) $L/G = 1$ (b) $L > G$ and $m=1$ (c) $L/G = m$ (d) None of the above Equilibrium and operating lines (OP and AB) for four gas-liquid contacting operations are shown							[CO2] [PO1]		
·	in the following figu									[00]][10]]
	100% stage efficien		0	1					6	
	(a)	•	(b)	(c))		(0	1)		
		1			A	P		Ι		
			Eq. line		B	1		Eq. 1	ine P_{P}	
	Y Y Y B Y Eq. line Y B									
	A Eq. line I B									
	0 X		Х	- (0	X	. ()	X	
C		• ,•,•		11 1	1 /	.1 1	1 •1•	c	• .1	
I	Which of the follow solvent?	ing quantities	s is apprecia	bly deper	ndent on	the solu	bility (of a gas	in the	[CO2] [PO1]
		(c) ā (specifi	r interfacial	area) (d	1) None (of the ah	ove			
g	(a) HTU (b) NTU (c) \bar{a} (specific interfacial area) (d) None of the above The relative volatility of A in mixture with B is $\alpha_{AB} = 2.0$. What is the value of α_{BA} ?								[CO3] [PO2]	
Б	(a) 2.0 (b) 0.5 (c) 1.0 (d) None of the above								[000][102]	
h	In binary distillation, the separation of the components is easier if the relative volatility (α) is								ity (α) is	[CO3] [PO2]
	(a) $\alpha >>1$ (b) $\alpha <<1$ (c) $\alpha =1$ (d) None of the above									
i	In a cooling tower terminology, the "range" means								[CO4] [PO1]	
	(a) the reduction in t								aximum and	
	minimum air flow ra							ese		
j									[CO4] [PO1]	
	(a) 1-4 (b) 0.75-1.5 (c) 0.25-0.75 (d) None of these									
PART – B: (Short Answer Questions) 2x10=20 Marks										
Q.2.	Answer <u>ALL</u> que		• •							
a 1	What is equimolar counter-diffusion?							[CO1] [PO1]		
b	Consider diffusion of A in non-diffusing B through a constant area from $z=z_1$, $p_A=p_{A1}$ to $z=z_2$,								[CO1] [PO2]	
	$p_A=p_{A2}$ (p_{A1} , p_{A2}). At which point in the diffusion path is the magnitude of the partial pressure gradient maximum ²									
gradient maximum?c Consider two cases of diffusion of A through a gaseous mixture of A and B:								[CO1] [PO1]		
U	(i) B is non diffusing, (ii) B undergoes equimolar counter diffusion.									
			ergoes equi		unter un	1401011.				

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001062

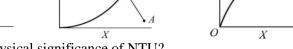
[CO2] [PO1]

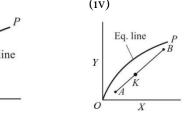
[CO2] [PO1]

[CO3] [PO2]

[CO4] [PO1]

[CO4] [PO1]


All the parameters (P, T, DAB, L, etc) as well as the terminal partial pressures of A are the same in both the cases.


In which case, the flux of A is larger? Give a qualitative explanation.

Equilibrium and operating lines (OP and AB) for four gas-liquid contacting operations are shown [CO2] [PO1] in the following figures. Identify which figures are the cases of co-current and counter-current absorption/stripping.

(ii) (iv) (i) (iii) Eq. line Eq. line Eq. line Y Y Y Eq. line 0 X X 0 X 0 X

What is the physical significance of NTU? e

- f What is the physical significance of HTU? The vapor pressures benzene and toluene are 3 and 4/3 atmospheres respectively. A liquid feed of g 0.4 moles of Benzene and 0.6 moles of Toluene is vaporized. Assuming that the products are in equilibrium, calculate the vapor phase mole fraction of benzene.
- In a binary distillation column, if the feed contains 40 mol% vapor, then find the q-line slope. h [CO3] [PO2]
- What is wet bulb depression? i
- j What are the common packings and materials for cooling tower?

PART - C: (Long Answer Questions) 15x4=60 Marks

0.3 Answer ALL questions

Q.,	Answei <u>ALL</u> questions								
a.	The diffusivity of carbon tetrachloride (CCl ₄) through Oxygen (O ₂) was determined in a steady state Arnold evaporating cell. The cell, having a cross sectional area of 0.82 cm ² , was operated at 273 K and 755 mmHg pressure. The average length of the diffusion path was 17.1 cm. If 0.0208 cc of CCl ₄ was evaporated in 10 hours of steady state operation, what should be the value of the diffusivity of CCl ₄ through oxygen? Take R value as 8314 J/ Kg K	10	[CO1] [PO1]						
b.	In an Oxygen-nitrogen gas mixture at 1 atm and 25 °C, the concentrations of oxygen at two planes 0.2 cm apart are 10% and 20% (by volume) respectively. Calculate the flux of oxygen when nitrogen is non diffusing. Diffusivity of oxygen in nitrogen is 0.215 cm ² /s.	5	[CO1] [PO2]						
	OR								
c.	Write short notes on		[CO1] [PO1]						
	i. Film theory (including assumptions)ii. Penetration theory (including assumptions)iii. Surface renewal theory	10	[][-]						
d.	Ammonia diffuses through nitrogen gas under equimolar counter diffusion at a total pressure of 1.013×10^5 Pa and at a temperature of 298 K. The diffusion path is 0.15 m. The partial pressure of ammonia at one point is 1.5×10^4 Pa and at the other point is 5×10^3 Pa. Diffusivity under the given condition is 2.3×10^{-5} m ² /s. Calculate the flux of ammonia (kmol/m ² s).	5	[CO1] [PO2]						
Q.4	1								
a.	The CO_2 issuing out of a fermenter contains 0.01 mole fraction of ethanol, which has to be reduced to 0.0001 mole fraction by scrubbing with water in a counter current packed	8	[CO2] [PO2]						

- tower. The gas flow rate is 227.3 kmol/hr and may be assumed constant throughout the tower. The equilibrium mole fraction of ethanol in the gas phase y* is related to that in the liquid x as $y^*=1.07x$. Determine the minimum liquid rate needed and the number of overall gas-side transfer units needed at 1.5 times the minimum liquid rate. The entering liquid may be assumed to be free of ethanol.
- b. Discuss the important criteria for the selection of solvent and stripping medium for 7 [CO2] [PO1] absorption.

d

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

R4A19001062

OR

	Ŭ K										
c.	An air-NH ₃ mixture containing 5% NH ₃ by volume is absorbed in water using a packed										[CO2] [PO2]
	tower at 20 °C and 1 atm pressure to recover 98% NH3. Gas flow rate is 1200 kg/h m ² .									0	
	Calculate minimum mass flow rate of liquid. The equilibrium relation is $y=1.154x$									8	
	where, x, y are expressed in mole fraction units. (A4 Graph Paper required to solve the question)										
d.	question) Determine the relation between the gas-phase mass transfer coefficients k_G and k_Y .									7	[CO2] [PO1]
Q5					Sus phus				KG und Ky.	,	[002][101]
Q <i>J</i>										8	[CO3] [PO2]
u.	50 mol% A and 50 mol% B into an overhead product of 95 mol% A and a bottom									0	[005][102]
	product of 96 mol% B. A reflux ratio of twice the minimum will be used and the feed										
	enters at its boiling point. Determine the number of theoretical stages required and the										
	location of feed point. Use McCabe-Thiele method.										
	Equilibrium data:										
	Х	0.03	0.06	0.11	0.14	0.26	0.39	0.53	4		
	У	0.08	0.16	0.27	0.33	0.50	0.63	0.71			
	X	0.66	0.76	0.86	1.0	-					
	y 0.83 0.88 0.93 1.0										
	x.y mole fraction of A in liquid and vapor phase respectively. (A4 Graph paper is required)										
b.	State Ra		V							7	[CO3] [PO2]
	State Ita	our o iuv	••			OR					[]
c.	Discuss the deviation from ideality and formation of azeotropes.									8	[CO3] [PO2]
d.					and rorm	unon or u	izeotrope			7	[CO3] [PO1]
d. Derive the Fenske's equation.Q.6										[000][101]	
									8	[CO4] [PO2]	
u.		-	nolal hun	-	-	01 100 M	u nus u i		initially of 0070.	0	[001][102]
				•		f its temp	erature is	reduced	to 15 °C and its		
	(ii) Calculate the molal humidity of this air if its temperature is reduced to 15 °C and its pressure increased to 200 kPa, condensing out some of the water.										
	(iii) Calculate the weight of water condensed from 100 m ³ of the original wet air in										
			and comp				••				
			final volu					1 1	с I: (7	10041 (0011
b.	Discuss the construction and working of a counter flow induced draft cooling tower with a neat diagram.									7	[CO4] [PO1]
	with a ne	at diagra	uIII.			OR					
	An air-v	vater var	or samn	le has a	dry bul	-	ature of	55 °C 4	and an absolute		[CO4] [PO2]
		n air-water vapor sample has a dry bulb temperature of 55 °C and an absolute unidity 0.03 kg water/kg dry air at 1 standard atm pressure. Using humidity chart. If									[004] [102]
c.	vapor pressure of water at 55 °C is 118 mm Hg, calculate the relative humidity, the									8	
	humid volume in m^3/kg dry air, enthalpy in J/kg dry air and the heat required if 100 m ³										
	of this air is heated to 110 °C.										
d.	l. Discuss the hygrometer method of humidity measurement.									7	[CO4] [PO1]
==0==											