	OI LINGINGING
1	25
2	States and a state of
	Tagat

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001163

	Registration No:														
Tot	Total Number of Pages : 3							B.TECH							
4 th Semester Regular Examination-April-May 2019 BCHPC4030 HEAT TRANSFER (Regulations 2017) CHEMICAL ENGG. Time : 3 Hours Maximum : 100 Marks															
	Time . 5 Hours				Ans	wer A	LL Ou	estion	5		IVIANI	11110		00 1014	uks
	Answer ALL Questions The figures in the right hand margin indicate marks.														
	PART – A: (Multiple Choice Questions) 10 x 2=20 Mark														
	Q.1. Answer <u>All</u> Questions.														
а	The thermal conduct (a) Silver (b) Chromit	•				minur	n (d) (⁷ orbo	n staal						[CO1] [PO1]
b	Heat transfer occurs b				,		. ,				cause	es	differ	rence	[CO 2] [PO1]
	in	- <u>-</u>						0	F -						[][]
	(a) Viscosity (b) Dens	•				•		eat Ca	apacity	у					
с	The critical radius of			-	- '		by								[CO 4] [PO2]
d	(a) $r = 2k/h$ (b) $r = k/h$ Grashof number is as	. ,		. , .	1) r = 1	n/K									[CO 2] [PO1]
	(a) buoyancy effect (b	o) free	e conv	rection						-	-				e
e	The advantage of usin	ng a 1	-2 She	ell and	l tube	heat e	exchan	iger ov	ver a 1	-1 Sh	ell an	nd t	tube h	neat	[CO 3] [PO2]
	exchanger is (a) Lower tube side p	r 000111	a droi	n											
	(b) Lower shell side p			-											
	(c) Higher tube side h				ïcient										
	(d) Higher shell side	heat th	ransfe	r coef	ficient	t									
f	Thermal radiative flu		n a su	rface of	of emi	ssivit	y 0.4 i	s 22.6	8 kW/	m^2 . T	he ap	ppr	oxim	ate	[CO 4] [PO2]
	surface temperature (1000	`											
	(a) 1000 (b) 727 (c) 8 Boltzmann's constant	00 (a t is 5 4) 1200 5 v 10) ⁻⁸ W/r	$p^2 \mathbf{v}^4$										
g	A multiple effect eva						le eff	ect ev	aporat	or of	the sa	amo	e capa	acity	[CO 3] [PO1]
Ð	has	p • 1 • • • • •		ompu					-porter	01 01			up		
	(a) Lower heat transfer area (b) Lower steam economy (c) Higher steam economy (d) Higher										r				
	solute concentration i							C		. .					
h	The advantage of bac				-	apora	tor ov	er for	ward-1	teed u	n1t 1s	su	ch as		[CO 3] [PO1]
	(a) Heat sensitive material can be handled(b) There is no additional cost of pumping														
	(c) Most concentration liquor is at highest temperature														
	(d) Equal heat transfe	-		-		-									
i										[CO 2] [PO2]					
-	(a) $Pr = 1$ (b) Schmid					•							•		
j	In heat exchanger, flo	-		-						-			-		[CO 3] [PO1]
	Increase the heat transfer area (c) Relieve stress cause by thermal expansion (d) Increase the LMTD														

R4A19001163

PART – B: (Short Answer Questions) 10x2=20 Marks

	PARI – B: (Snort Answer Questions) 10x2=20 Marks		
0	Q.2. Answer <u>ALL</u> questions What is the difference between best transfer and thermodynamics? What do you		
а	What is the difference between heat transfer and thermodynamics? What do you understand by conductance?		[CO 1] [PO1]
b	How the arithmetic logarithmic mean radius for a cylinder is determined and write-det the linear relation between thermal conductivity and temperature.	own	[CO 1] [PO1]
c	Draw Wilson plot to determine film heat transfer coefficient. In which case the norm diameter is replaced by equivalent diameter?	al	[CO 1] [PO2]
d	State the equation used for predicting heat transfer coefficient for turbulent flow in tu or pipes and if viscosity of the fluid near the wall is taken into account.	ıbes	[CO 2] [PO1]
e	What are the major disadvantages of double pipe heat exchanger? How the tube pitch and Clearance is defined?	1	[CO 3] [PO1]
f	What do you understand by 25 % cut segmental baffle and where it is used?		[CO 3] [PO2]
g	Difference between single pass and multi-pass shell and tube heat exchanger.		[CO 3] [PO2]
h	What is steam economy and how it can be increased?		[CO 3] [PO1]
i	Define grey body? State an expression for net heat transfer coefficient for radiation for a grey body from temperature T_1 to a black surrounding at temperature T_2 .		[CO 4] [PO1]
j	Calculate the rate of heat transfer by radiation from an unplugged steam pipe, 80 mm O.D.at 393 K to air at 293. Assume emissivity = 0.9	l,	[CO 4] [PO2]
	PART – C: (Long Answer Questions) 4x15=60 Marks		
	Answer <u>ALL</u> questions		
Q.:			
a	An exterior wall of a house may be approximated by a 4-in layer of common		[CO 1] [PO 2]
	brick (k = 0.7 W/m .°C) followed by a 1.5 in layer of gypsum plaster (k = 0.48		
	W/m .°C). What thickness of loosely packed rock-wool insulation ($k = 0.065$ W/m °C) about the added to reduce the base loss or gain through the well by 80 % 2	8	
b	.°C) should be added to reduce the heat loss or gain through the wall by 80 %?		[CO 1] [PO 1]
U	Calculate the critical radius of insulation for asbestos ($k = 0.17 \text{ W/m} \cdot ^{\circ}\text{C}$) surrounding a pipe and exposed to room air at 20 °C with $h = 3.0 \text{ W/m}^2 \cdot ^{\circ}\text{C}$.		
	Calculate the heat loss from 200 $^{\circ}$ C, 5.0 cm dia. pipe when covered with a critical	7	
	radius of insulation and without insulation. Consider that the inside radius of		
	insulation is 50 % of the dia. of pipe.		
	OR		
с	Derive an expression for the thermal resistance through a hallow spherical shell of		[CO 1] [PO 1]
	inside radius r_i and outside radius r_o having a thermal conductivity k.	0	
d	A material 2.5 cm thick with a cross-sectional area of 0.1 m^2 , has one side	8	[CO 1] [PO 1]
	maintained at 35 °C and the other at 95 °C. The temperature at the center plane of		
	the material is 62 $^{\circ}$ C and the flow through the material is 1kW. Obtain an	7	
	expression for the thermal conductivity of the material as a function of	/	
	temperature.		
Q.4			
а	Calculate the inside heat transfer coefficient for a fluid flowing at a rate of 300		[CO 2] [PO 2]
	cm^3/s through 20 mm inside diameter tube of heat exchanger.	8	
	Viscosity of flowing fluid = 0.8 N.s/m^2 .		
	Density of flowing fluid = 1.1 g/cm^3		
	Specific heat of fluid = 1.26 kJ/kg .K		
	Thermal conductivity of fluid = 0.384 W/m.K		
	Viscosity at wall temperature = 1.0 N.s/m2		
ե	Length of heat exchanger = 5 m	7	
b	(i) Discuss about different steps of boiling phenomena with figure.	7	[CO 2] [PO 2]

(ii) What do you understand by effectiveness of a heat exchanger?

R4A19001163

	James C.		
	OR		
c	A vertical plate 30/30 cm is exposed to a steam at atmospheric pressure. The plate is at 371 K. Calculate the mean heat transfer coefficient and the heat transfer rate and mass of steam condensed per hour.	8	[CO 2] [PO 2]
	The properties of condensate at the film temperature are given below: $\mu = 2.82 \times 10^{-4} \text{ kg/m.s}$		
	$\rho = 960 \text{ kg/m}^3$		
	$\lambda = 2255 \text{ kJ/kg}$		
	k = 0.68 W/mK		
	Saturation temperature = 100 °C		
d	How the Film wise condensation and Drop-wise condensation is different?	7	[CO 2] [PO 2]
Q.5		,	
a	Hot oil at 100 °C is used to heat air in a shell and tube heat exchanger. The oil	8	[CO 3] [PO 2]
	makes six tube passes and the air makes one shell pass: 2.0 kg/s of air are to be	8	
	heated from 20 to 80 °C. The specific heat of the oil is 2100 J/kg. °C and flow rate		
	is 3.0 kg/s. Calculate the area required for the heat exchanger for $U = 200 \text{ W/m}^2$. °C.		
b	How the performance of an evaporator is calculated? Derive the material and	7	[CO 3] [PO 2]
	energy balance of a triple effect evaporator.	/	
	OR		
с	Write down the working principles, advantages, disadvantages and applications of	_	[CO] [PO 2]
1	Rising and Falling film evaporators.	7	
d	An evaporator is operating at atmospheric pressure. It is desired to concentrate the		[CO 3] [PO 2]
	feed from 5 % solute to 20 % solute by weight at a rate of 5000kg/h. Dry		
	saturated steam at a pressure corresponding to saturation temperature of 399 K is		
	used. The feed is at 298 K and boiling point rise is 5 K. Overall heat transfer coefficient is 2350 W/m ² K. Calculate economy of evaporator and area of heat		
	transfer to be provided. If pure water is the treating solution and latent heat of		
	condensation is 2185 kJ/kg at 399 K and latent heat of vaporization at 373 K is	8	
	2257 kJ/kg. Specific heat of feed is 4.187 kJ/kg.K	0	
Q.6			
a a	The space between the two concentric spherical vessels is completely evacuated.		[CO 4] [PO 1]
	The inner sphere contains air at -197 °C. The ambient temperature is 300 K. The		
	surface of the sphere are highly polished ($e = 0.4$). Find the rate of evaporation of	0	
	liquid air per hour. Dia. of inner sphere is 270 mm and outer sphere is 360 mm.	8	
	Latent heat of vaporization of air is 200 kJ/kg		
b	Two very large parallel plates are maintained at uniform temperatures $T_1 = 800$ K	7	[CO 4] [PO 2]
	and $T_2 = 500$ K and have emissivities 0.2 and 0.7, respectively. Determine the	1	
	net rate of radiation heat transfer between the two surfaces per unit surface area of		
	the plates.		
	OR		
с	Calculate the rate of heat loss from a thermoflask if the polished silver surfaces		[CO 4] [PO 2]
	have emissivity 0.05, the liquid in the flask is at 95 °C and the casting is at 293 K.	8	
1	Calculate the loss if both surfaces were black.	-	
d	The inner sphere of a flask is 30 cm dia. and outer sphere is 36 cm dia. Both		[CO 4] [PO 2]
	sphere are coated for which emissivity is 0.05. Determine the rate at which liquid	7	
	oxygen (latent heat = 21.44 kJ/kg) would evaporate at 90 K when outer sphere		
	temperature is 293 K. Assume that the other mode of heat transfer are absent.		