	OI LINGING STATE
THE REAL	
	Innina I.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

R4A19001084

	Registration No:														
Total Number of Pages : 2											1	1	B.TEC	H	
	8		4 th Se	emeste	r Regu	ılar Ex	amina	tion-A	pril-M	lay 201	9				
								AL M							
	.		(Reg	ulatio	ns 201	7) Co	mmon	to EE	E,EE			100			
Time	: 3 Hours				A				_	N	/lax1m	um : 100	Marks		
			Tho fi	auroc				estion: argin i		to mar	ke				
				-		-		stions)							
0 1	Answer All Questions				unipic	CHOIC		500115	10 / 1	2-201					
Q.1 a	Answer <u>All</u> Questions In an alternator, if the		no is s	hort n	itch hy	$60^0 e^{-1}$	lectric	al anol	e its n	vitch fa	ctor w	vill be		[CO1] [PO1]	
a	a) 1 b) 0.866				nen by	00 0		ai aligi	c, ns p		ictor w				
b	The starting torque of				n be in	crease	d by ii	ncreasi	ng					[CO5] [PO2]	
-	a) Rotor resistan									tor rea	ctance				
С	In 3-phase IM, torque														
	a) $T \alpha V^{1/2}$ b) T													[CO5] [PO2]	
d	In washing machines,			•										[CO5] [PO2]	
	a) Split phase induction										quirrel	cage IM			
e	A 4-pole 50 Hz IM or				-			speed v	vill be					[CO5] [PO2]	
f	a) 1500 rpm b) The maximum power							when	the lo	ad ano	le ic			[CO2] [PO1]	
1	a) 0 degree. b) 4									au ang	10 15				
g	Crawling is a phenom					, 120		•						[CO5] [PO2]	
0	a) Frequency Fluctuat					lux wa	we. c)	Low s	upply	voltag	ge. d	d) Heavy	load.	[][-]	
h	An alternator is said to					-	•							[CO4] [PO2]	
	a) Unity power factor (p.f.) b) Lagging p.f. c) Leading p.f. d) None of the above.														
i	If the armature reaction											eld, the p	ower	[CO4] [PO]	
		Unity.		-				-				us speed t	than		
j	In a synchronous moto damper bar develops	or, dur	ing nu	inting	when	ne rou	or spee	e exce	eus m	le sync	шопо	us speed i	linen	[CO3] [PO1]	
	a) Induction generat	tor tore	ue. b) Harr	nonics	. c) D(C moto	or torau	ie.d)Sv	vnchro	nous n	notor torc	ue.		
	<i>, , , , , , , , , ,</i>							ions) 1					1		
Q.2	Answer <u>ALL</u> questions	5													
а	Why do cylindrical Al	lternato	ors op	erate v	with ste	eam tu	rbines	?						[CO2] [PO1]	
b	Mention the condition	s nece	ssary f	for par	rallel o	peratio	on of a	lternat	ors?					[CO3] [PO1]	
С	What is the necessity	-				•	•		altern	nator?				[CO1] [PO2]	
d	How synchronous imp							SCC?						[CO1] [PO2]	
е	How does change in e				e load	sharin	ıg?							[CO3] [PO1]	
f	What is meant by infinite bus-bars? Why are centrifugal switches provided on many 1-phase Induction motors?									[CO1] [PO2]					
g	• •		-			-								[CO5] [PO2]	
h	Why is not possible for magnetic field?									to the	speed	l of its rot	ating	[CO5] [PO2]	
i	Mention the methods		-		-	-								[CO4] [PO2]	
j									[CO4] [PO2]						
	• • • • · ·		<u> RT – C</u>	<u>C: (Lor</u>	ng Ansv	wer Q	uestio	ns)	4 x 15	5=60 N	<u>larks</u>				
• • •	Answer <u>ALL q</u> uest	lons													
Q.3	With necessary phasor	diama	ame e	vnlain	the of	fect of	incres	se in c	vnehr	onous	genera	tor loade	at [10]	[CO1] [PO2]	
а	(i) lagging power facto	•		-					•		501010	uor roaus	at [10]		
b	A 3-Phase, 50 Hz, sta										circui	t current	of [5]	[CO2] [PO1]	
	600A for a certain field														
	The resistance between		air of	termin	nal was	s 0.12	Ω.Fi	nd the	full lo	bad vo	ltage r	egulation	at		
	UPF and 0.8 p.f. laggin	ng.													

OR

- [CO2] [PO1] С
- Differentiate between salient pole type and cylindrical rotor type synchronous machines. [7] Define voltage regulation of an alternator? Explain the Synchronous impedance method for [8] voltage regulation. Write down the advantages of this method. [CO2] [PO1] d

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R4A19001084

Q.4									
а	A 480-V, 60-Hz, Δ connected, four-pole synchronous generator has a direct-axis reactance of 0.1 Ω , and a quadrature-axis reactance of 0.075 Ω . Its armature resistance may be neglected. At full load, this generator supplies 1200 A at a power factor of 0.8 lagging.	[10]	[CO2] [PO1]						
	(a) Find the internal generated voltage ($\mathbf{E}_{\mathbf{A}}$) of this generator at full load, assuming that it has a cylindrical rotor of reactance Xd .								
	(b) Find the internal generated voltage ($\mathbf{E}_{\mathbf{A}}$)of this generator at full load, assuming it has a salient-pole rotor.								
b	Explain two reaction theory of synchronous generator. Draw the phasor diagram for direct axis and quadrature axis voltage drop of synchronous generator.	[5]	[CO2] [PO1]						
~	•	[0]							
С	Explain the effect of change in field current on a synchronous motor in the context of 'V'curve and 'inverted V' curves.	[8]	[CO4] [PO2]						
d	A 3300-V, 1.5 MW, 3-phase, star connected synchronous motor has $X_d=4\Omega$ /phase and $X_q=3\Omega$ /phase. Neglecting all losses, calculate the excitation e.m.f, when the motor supplies rated load at unity p.f. Also calculate the maximum mechanical power which the motor would develop for this field excitation.	[7]	[CO4] [PO2]						
Q.5									
а	A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 15 hp. Its equivalent circuit components are $R1 = 0.220 \Omega$, $R2 = 0.127 \Omega$, $X M = 15.0 \Omega$	[10]	[CO5] [PO2]						
	$X1 = 0.430 \Omega$, $X2 = 0.430 \Omega$, Pmech = 300 W, Pcore = 200 W								
	For a slip of 0.05, find								
	(a) The line current IL								
	(b) The stator copper losses PSCL								
	(c) The air-gap power PAG(d) The power converted from electrical to mechanical form Pconv								
 (e) The induced torque (τind) (f) The load torque (τload) 									
	(g) The overall machine efficiency								
	(h) The motor speed in revolutions per minute and radians per second								
b	With a neat diagram, explain the torque-slip characteristics of three phase induction motor with variation in rotor resistance.	[5]	[CO5] [PO2]						
OR									
С	Explain the procedure of determination of parameters of 3-ph induction from blocked rotor test.	[9]	[CO5] [PO2]						
d	Write notes on (i) Cogging (ii) Crawling.	[6]	[CO5] [PO1]						
Q.6									
a b	Explain the double field revolving theory for operation of single phase induction motor. Mention the major three techniques used to start a single phase induction motor. Briefly explain	[7] [8]	[CO5] [PO2] [CO5] [PO1]						
	on any two techniques.								
c d	Explain the working principle of single phase induction motor. Mention four of its applications. How the parameters of single phase induction motors are evaluated from no load and blocked rotor tests?	[7] [8]	[CO5] [PO2] [CO5] [PO2]						

==0==