

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

R2A19001034

a. I i i b. I c. V d. V	2 nd Semester Regular Examination-April-May 2019 BBSBS1021 Engineering Physics (Regulations 2018) Common to CIVIL/ECE/EE/EEE/BIOTECH/IT/CHEM/AEIE ENG Sime : 3 Hours Maximum : 100 Marks Answer ALL Questions The figures in the right hand margin indicate marks.	G.				
i a b. N c. N d. N	DADT A. (Multiple Choice Questions) 10 y 2-20 Meyls	BBSBS1021 Engineering Physics (Regulations 2018) Common to CIVIL/ECE/EE/BIOTECH/IT/CHEM/AEIE ENGG. Time : 3 Hours Maximum : 100 Marks Answer ALL Questions				
i a b. N c. N d. N	PART – A: (Multiple Choice Questions) 10 x 2=20 Mark	PART – A: (Multiple Choice Questions) 10 x 2=20 Mark				
 b. M c. N d. N 	Q.1. Answer <u>All</u> Questions. Does the law of conservation of energy hold good in interference phenomenon? i) Yes ii) No iii) Depends upon the type of interference iv) Depends upon the experimental	[CO1] [PO1]				
d. V	arrangements Newton's ring illustrate the phenomenon of	[CO1] [PO1]				
	 (i) Interference ii) Diffraction iii) Polarization iv) Dispersion Which of the following phenomena are not observed in case of matter wave? (i) Interference ii) Polarization iii) Diffraction iv) None of the above 	[CO1] [PO1]				
0	Which of the following represent a three level laser?	[CO1] [PO1]				
e. <i>A</i>	 (i) He-Ne laser ii) Semiconductor laser iii) Ruby laser iv) All of these A set of equivalent planes is represented by (i) [hkl] ii) {hkl} iii) (hkl) iv) <hkl></hkl> 	[CO2] [PO1]				
f. I	For a cubic structure	[CO2] [PO1]				
g. V	i) a=b=c ii) a≠b≠c iii) a=b≠c iv) a≠b=c Which of the following is zero?	[CO3] [PO1]				
	(i) Grad div ii) Div curl iii)Curl grad iv) Div grad What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric or a good conductor?	[CO3] [PO1]				
i. N j. 7	 (i) Attenuation constant iii) Constitutive paramaters(σ, μ, ε) (ii) Loss tangent iv)Reflection coefficient Which of the following conservation principle is violated during pair production? (i) Momentum ii) Charge iii) Energy iv) None of the above Two particles of masses m₁ and m₂ move with the same momentum. The ratio of their deBroglie wavelengths will be (i) 0 ii) 1 iii) 3 iv) 4 	[CO4] [PO1] [CO4] [PO1]				
	PART – B: (Short Answer Questions) 10x2=20 Marks					
b. c. d. e. f.	 Q.2. Answer <u>ALL</u> questions Differentiate between Fresnel diffraction and Fraunhofer diffraction. What are the characteristics of a laser? What is the number of lattice points per unit cell for a BCC unit cell? State and explain Bragg's Law. Write the physical significance of the Maxwell's equations? Give a comparison between conduction current and displacement current. Explain Black Body Radiation. 	[CO1] [PO1] [CO1] [PO1] [CO2] [PO1] [CO2] [PO2] [CO3] [PO1] [CO3] [PO1] [CO4] [PO1]				

R2A19001034

PART – C: (Long Answer Questions) 4x15=60 Marks

Answer <u>ALL questions</u>

	Answer <u>ALL questions</u>			
Q.3				
a.	Discuss the formation of Newton's ring by reflected light. Describe the experimental arrangement and give necessary theory.	8	[CO1] [PO1]	
b.	Explain with the help of a neat diagram the working of a ruby laser OR	7	[CO1] [PO1]	
c.	Describe the construction, theory and working of Fresnel's biprism experiment to find the wavelength of light.	8	[CO1] [PO1]	
d.	What is an optical fibre? Define and explain the terms (i) Acceptance angle (ii) Numerical aperature	7	[CO1] [PO1]	
Q.4	1			
a.	What is the concept of miller indices? Derive the formula for the distance between two adjacent plains of simple cubic lattice.	8	[CO2] [PO1]	
b.	What is Bravais lattice? Explain different types of Bravais lattices in three dimensions.	7	[CO2] [PO1]	
c.	What do you mean by packing factor? Determine the packing factor for simple cubic, BCC and FCC structures	8	[CO2] [PO2]	
d. Q.5	Differentiate between metals, semiconductors and insulators using band theory.	7	[CO2] [PO1]	
Q.5 a.	State and prove Gauss's theorem in electostatic. Derive the differential form of this theorem.	8	[CO3] [PO1]	
b.	(i)Find the value of grad(r) where $\mathbf{r}=\mathbf{x} \mathbf{i}+\mathbf{y} \mathbf{j}+\mathbf{z} \mathbf{k}$	7	[CO3] [PO2]	
	(ii) prove that $\operatorname{div}(\mathbf{A}+\mathbf{B})=\operatorname{div}\mathbf{A}+\operatorname{div}\mathbf{B}$			
OR				
c.	Starting from Maxwell's equations in free space, obtain the wave equation's in terms of scalar and vector potentials .	8	[CO3] [PO2]	
d.	Evaluate curl A, where $A = i xy + j yz + k zx$	7	[CO3] [PO2]	
Q.6				
Q. 0	Solve the Schrodinger's time independent equation to find the energy eigen values of a free particle	8	[CO4] [PO2]	
b.	Calculate the energy difference between the ground state and the first excited state for an	0	[CO4] [PO2]	
0.	electron in one dimensional rigid box of length 10^{-8} cm. (<i>Mass of electron is 9.1 x 10^{-31} kg and $h = 6.63 \times 10^{-34}$ js.</i>)	7	[004] [102]	
OR				
C	By applying uncertainty principle, explain non-existence of electrons in atomic nucleus.	8	[CO4] [PO2]	
c.	Find the smallest possible uncertainty in position of the electron moving the velocity 3 x	0	[CO4] [PO2]	
d.	10 ⁷ m/s. (<i>Mass of electron is</i> 9.1 x 10 ⁻³¹ kg and $h = 6.63 \times 10^{-34}$ js.)	7	[UU4] [FU2]	

==0==