

R2A19001003

	CASSED.								-		-
]	Registration No:										
Tot	al Number of Pages										B.TECH
2nd Semester Regular Examination - April-May 2019 BBSBS2010 - Engineering Mathematics-II (Regulations 2018)(Common to all Branches) Time : 3 Hours Maximum : 100 Marks Answer ALL Questions The figures in the right hand margin indicate marks.							num : 100 Marks				
	PART – A: (Multiple Choice Questions) 2x10=20 Marks										
	Answer <u>All</u> Questio										[601] [003]
а.	The solution of x_p	• •		0	<i>/···</i> \	c (2	2.5	0 (``		[CO1] [PO2]
	(i) $f(x^2, y^2) =$ $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0.$	0, (11) <i>f</i> (xy, yz.)) = 0,	(111) j	f (x²,	y ²)=	= 0, (1	V)		
b.	The equation $u_x e^{x}$	$v = u_y e^x \operatorname{giv}$	ves the	gene	ral so	lutior	1				[CO1] [PO1]
c.	(i) $u = ae^{x} - be$ (iii) $u = a(e^{x} + A)$ A solution of $u_{xx} = be$	$(e^{y})+b$ (i	v) non	e of t	hese.						[CO1] [PO2]
						X 1.					[001][101]
d.	(i) $\int f(y)dy +$ (iii) $\int f(y)dx$, The Laplace Trans	(iv) $\int f(x)$	dx + dx			<i>)ax</i> ,					[CO2] [PO2]
e.	(i) π/\sqrt{s} $L{\delta(t-a)}$ equals	(ii) $\sqrt{\pi/s}$	5 (2	5, 2) non	e of t	hese.		[CO2] [PO1]
	(i) e^{-as} (ii) $\frac{e}{as}$	— (iii) 1	(iv)	none	of the	ese.					
f.	The potential f (=	3					5				[CO3] [PO1]
	(i) <i>xyz</i> (ii) 3	-			-			these	•		
g.	If $f = 3x^2 + 4y^{3/2}$	$^2-4\sqrt{z}$, the second	nen <i>cu</i>	rl(gr	ad f) is eq	ual to	С			[CO3] [PO2]
h.	(i) 0 (ii) 1 (i Green's theorem e (i) line integra integra	i) $x + y -$ stablish a al & surfac	z (iv) relatio	none n bet	of th ween	ese.			triple	•	[CO4] [PO1]
	(iii) line integr		le inte	gral (iv) nc	one of	these	e.			
i.	If $x = r\cos\theta \& y =$		- (,-,							[CO4] [PO2]
		(iii) tai									[004] [004]
j	The value of the li	ne integra	$I \oint_C F(i)$	r)dr	over a	a strai	ight li	ine fr	om ((), 0) t	0 [CO4] [PO1]
	(2, 0) and over a c(i) occasional(iii) always dif	ly same (ii) alwa	ys sa	ime)=0	is		

PART – B: (Short Answer Questions) 2x10=20 Marks

Q.2. Answer <u>ALL</u> questions

a.	Form a partial differential equation for the curve $z = (x + A)(y + B)$, where A and B are arbitrary constants.	[CO1] [PO1]
b.	Define the complete solution and general solution of a partial differential equation.	[CO1] [PO2]
c.	Give an example of a function of which Laplace Transform does not exist. Also, justify your answer.	[CO2] [PO2]
d.	Find the Laplace Transform of $2^t \sin 3t$.	[CO2] [PO1]
e.	Find the inverse Laplace Transform of $\frac{2s+16}{s^2-16}$.	[CO2] [PO2]
f.	Find the unit normal vector to the surface $x^2 + y^2 = 25 at (2,3)$.	[CO3] [PO1]
g.	Prove that $f = z - \sqrt{(x^2 + y^2)}$ satisfies the Laplace equation.	[CO3] [PO2]
h.	Write the conditions for the solenoidal and irrotational flow of fluid.	[CO3] [PO1]
i.	State divergence theorem of Gauss.	[CO4] [PO1]
j	Find the parametric form of $x^2 + y^2 + \frac{1}{4}z^2 = 1$.	[CO4] [PO2]

PART – C:Answer ALL questions 15x4=60 Marks

Q.3 [CO1] [PO1] Solve: x(y-z)p+y(z-x)q=z(x-y). a. (7+8)Marks Use Charpit's method to solve: $(p^2 + q^2)y = qz$. [CO1] [PO1] b. OR Solve: $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = xyz.$ [CO1] [PO1] c. (7+8)Marks Find the complete integral of $xp + 3yq - 2z + 2x^2q^2 = 0$. [CO1] [PO1] d. **Q.4** Use Laplace Transform to solve: [CO2] [PO2] a. $y'' + 5y' + 4y = 2e^{-2t}; y(0) = y'(0) = 0.$ (7+8)Marks Find the Laplace Transforms of [CO2] [PO2] b. (i) $te^{-t}\cos t$ and (ii) $t^2(\sin \pi t + \cos 2t)$. OR Use Laplace Transform to solve: c. [CO2] [PO2] $y(t) + 2e^{t} \int_{0}^{t} e^{-u} y(u) du = te^{t}.$ (7+8)Marks [CO2] [PO2] d. Find the inverse Laplace Transforms of (i) $\frac{s}{(s^2 + \pi^2)^2}$ and (ii) $\ln\left(\frac{s+a}{s+b}\right)$.

R2A19001003

a.	Find the dimensional derivative of f_{1} , r_{2}^{2} , $2r_{1}^{2}$, $4r_{1}^{2}$, r_{1}^{2} (1.0.1)		[CO3] [PO1]					
и.	Find the directional derivative of $f = x^2 + 3y^2 + 4z^2$ at (1,0,1) in the direction of $\hat{a}^2 = -\hat{i} - \hat{j} + \hat{k}$. Also, find the direction in							
	which it is maximum.	(7+8)Marks						
b.	If $\vec{F} = xyz(x\hat{i} + y\hat{j} + z\hat{k})$, then find Div (\vec{F}) and Curl (\vec{F}).		[CO3] [PO2]					
	OR							
c.	If a continuously differentiable vector function is the gradient of		[CO3] [PO1]					
ι.	a scalar function f , then prove its curl is a zero vector.							
	Also, prove that the divergence of the curl of a twice	/						
	continuously differentiable vector function v is zero.	(7+8)Marks						
d.	Prove: (i) $\nabla(f^n) = nf^{n-1}\nabla f$ and		[CO3] [PO2]					
	(ii) $div(f \nabla g) - div(g \nabla f) = f \nabla^2 g - g \nabla^2 f$.							
Q.6								
a.	Use Green's theorem to evaluate $\oint F(r)dr$ counterclockwise		[CO4] [PO1]					
	around the boundary C of the region R, where							
	$\hat{F} = (y - x), C : x^2 + y^2 = \frac{1}{4}.$							
	7	(7+8)Marks						
b.	Evaluate $\iint_{a} F \hat{n} dA$, where		[CO4] [PO2]					
	$F = [x, y, z]$ and S the hemisphere $x^2 + y^2 + z^2 = 4, z \ge 0.$							
OR								
C.	Evaluate $\int_{1}^{5} \int_{0}^{x^2} (1+2x) e^{(x+y)} dy dx.$		[CO4] [PO1]					
d.	Evaluate $\oint^{1} F(r) dr$, where C is the boundary of the surface		[CO4] [PO2]					
	C	(7+8)Marks						
	$x^{2} + y^{2} = 4$; $z = 1$ oriented counter-clockwise and							
	F = (-3y, 3x, z). Also, verify the result by Stoke's theorem.							

==0==