| Registration no: | | | | | | | | | | | | | | | | | |---|---|---|--------|------------------------------------|------|-------|------|-------|--------|-------|------|---------------|-----------------|--------------------------|----------|-----| | Total Number of Pages: 02 | | | | | | | | 210 | | | 210 | | 210
<u>P</u> | <u>B.Tech</u>
CMT4202 | 210 | | | 3 rd Semester Back Examination 2016-17 METALLURGICAL THERMODYNAMICS AND KINETICS BRANCH(S):METTA, MME Time: 3 Hours Max Marks: 70 Q.CODE:Y500 Answer Question No.1 which is compulsory and any five from the | | | | | | | | | | | | - vt | 210 | | | | | A | nsw | rer Question
The fig | | | | | | - | | - | | • | | | e rest. | | | Q1 210 | a) Define entropy. Is it a path function? b) What is third law of thermodynamics? c) Define Internal Energy. d) Write Gibb's Helmholtz equation & define Gibb's Free energy. e) Give an example of a closed system &how a closed system open system. f) Define compressibility factor. | | | | | | | | | | | nergy
em d | | 210
FOM | (2 x 10) | 210 | | b) Define specific heat at constant pressure. i) What is the difference between physical adsorption and chemisorption? j) Define fugacity. | | | | | | | | | | | | | on? | | | | | Q2 210 | | Derive the form a) $dH = C_p d$
b) $dS = C_p d$
c) $dG = VdP$ | - T\Tb | $T(\frac{\partial V}{\partial T})$ | - | | | 210 | | | 210 | | | 210 | (10) | 210 | | Q3 ₀ | а) | Derive the re | | | weeı | n the | stan | dard | Gibb | s ene | ergy | chan | ge and | 210 | (5) | 210 | | | b) | What is the | effect | of te | empe | ratur | e on | the e | quilik | rium | cons | stant? | > | | (5) | | - Q4 a) One mole of solid Cr_2O_3 at 2500K is dissolved in a large volume of a liquid Raoultian solution of Al_2O_3 and Cr_2O_3 in which $X_{Cr_2O_3} = 0.2$ and which is also at 2500K. Calculate the changes in enthalpy and entropy caused by the addition. The normal melting temperature of Cr_2O_3 is 2538 K, and it can be assumed that the $\Delta S_{m,Al_2O_3} = \Delta S_{m,Cr_2O_3}$. - b) Derive the Maxwell relations. (5) - Q5 a) Consider the second-order reaction A + B __k ___ D k= 5.41/ (moles). The initial concentration of the reactants wasc⁰_A= c⁰_B= 0.02 moles/lit. Determine the fraction of A which will be consumed during the first minute. - b) A monoatomic gas (diffusant) is enclosed within a thin metallicspherical shell at constant temperature. During a t₁=100 h period, some of the gas diffuses through the shell such that the pressure inside drops fromp₀=10 atm top₁=9.5 atm. The partial pressure of the diffusant outside the shell isp_{out}=1 atm. Find the time t₂ necessary for the pressure to drop top₂=8 atm. - Q6 a) Explain the diffusion mechanisms in metals with the help of suitable diagrams. (5) - b) Write the differences between thermal and configurational entropy. (5) - Q7 Show that: (10) $C_P = T(\partial S/\partial T)_P$ 210 $C_V = T(\partial S/\partial T)_V$ 210 210 210 $\left(\frac{\partial C_P}{\partial P}\right)_T = -T(\partial^2 V/\partial T^2)_P$ - Write short answer on any TWO: a) Kinetics of homogeneous reactions - b) Clausius-Clapeyron equation $(\partial C_V / \partial V)_T = T (\partial^2 P / \partial T^2)_V$ - c) Gibbs-Duhem relation - d) Van't Hoff isobar **Q8**° (5×2)