Registration no:																
Total Number of Pages: 02								210			210		210 <u>P</u>	<u>B.Tech</u> CMT4202	210	
3 rd Semester Back Examination 2016-17 METALLURGICAL THERMODYNAMICS AND KINETICS BRANCH(S):METTA, MME Time: 3 Hours Max Marks: 70 Q.CODE:Y500 Answer Question No.1 which is compulsory and any five from the												- vt	210			
A	nsw	rer Question The fig						-		-		•			e rest.	
Q1 210	 a) Define entropy. Is it a path function? b) What is third law of thermodynamics? c) Define Internal Energy. d) Write Gibb's Helmholtz equation & define Gibb's Free energy. e) Give an example of a closed system &how a closed system open system. f) Define compressibility factor. 											nergy em d		210 FOM	(2 x 10)	210
 b) Define specific heat at constant pressure. i) What is the difference between physical adsorption and chemisorption? j) Define fugacity. 													on?			
Q2 210		Derive the form a) $dH = C_p d$ b) $dS = C_p d$ c) $dG = VdP$	- T\Tb	$T(\frac{\partial V}{\partial T})$	-			210			210			210	(10)	210
Q3 ₀	а)	Derive the re			weeı	n the	stan	dard	Gibb	s ene	ergy	chan	ge and	210	(5)	210
	b)	What is the	effect	of te	empe	ratur	e on	the e	quilik	rium	cons	stant?	>		(5)	

- Q4 a) One mole of solid Cr_2O_3 at 2500K is dissolved in a large volume of a liquid Raoultian solution of Al_2O_3 and Cr_2O_3 in which $X_{Cr_2O_3} = 0.2$ and which is also at 2500K. Calculate the changes in enthalpy and entropy caused by the addition. The normal melting temperature of Cr_2O_3 is 2538 K, and it can be assumed that the $\Delta S_{m,Al_2O_3} = \Delta S_{m,Cr_2O_3}$.
 - b) Derive the Maxwell relations. (5)
- Q5 a) Consider the second-order reaction

 A + B __k ___ D k= 5.41/ (moles).

 The initial concentration of the reactants wasc⁰_A= c⁰_B= 0.02 moles/lit.

 Determine the fraction of A which will be consumed during the first minute.
 - b) A monoatomic gas (diffusant) is enclosed within a thin metallicspherical shell at constant temperature. During a t₁=100 h period, some of the gas diffuses through the shell such that the pressure inside drops fromp₀=10 atm top₁=9.5 atm. The partial pressure of the diffusant outside the shell isp_{out}=1 atm. Find the time t₂ necessary for the pressure to drop top₂=8 atm.
- Q6 a) Explain the diffusion mechanisms in metals with the help of suitable diagrams. (5)
 - b) Write the differences between thermal and configurational entropy. (5)
- Q7 Show that: (10) $C_P = T(\partial S/\partial T)_P$ 210 $C_V = T(\partial S/\partial T)_V$ 210 210 210 $\left(\frac{\partial C_P}{\partial P}\right)_T = -T(\partial^2 V/\partial T^2)_P$

 - Write short answer on any TWO:

 a) Kinetics of homogeneous reactions
 - b) Clausius-Clapeyron equation

 $(\partial C_V / \partial V)_T = T (\partial^2 P / \partial T^2)_V$

- c) Gibbs-Duhem relation
- d) Van't Hoff isobar

Q8°

 (5×2)