Registration No:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 03

B.TECH

3rd Semester Regular Examination 2016-17 **NETWORK THEORY**

BRANCH: EE Time: 3 Hours Max Marks: 100 **Q.CODE: Y646**

Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.

Part – A (Answer all the questions)

Q1 Answer the following questions:

(2 x 10)

- a) State and explain reciprocity theorem
- b) State and explain Milliman's theorem
- c) For the series circuit find 'k' and place the dots such that circuit is in series resonance.

- d) The shape of the transient current in loss free L C circuit when excited from AC source
- e) A two port network is defined as

$$I_1 = 2V_1 + V_2$$

 $I_2 = 2V_1 + 3V_2$

Find Z₁₂

- f) Explain the presence of harmonic in 3 phase circuits.
- 210 **g)** Explain how complex waves can be applied to RL & RLC circuits
 - h) Define reduced incidence matrix.
 - State the relation between tree branch and tree link.
 - State and explain compensation theorem.

Q2 Answer the following questions:

(2 x 10)

- a) A system has input unit step and transfer function $T(s) = 1/(s^2 + 3s + 5)$ find output of the system at steadystate
- b) What is the efficiency and power produced by the network at maximum power transfer condition.
- c) Which theorem obey laws of conservation of energy.
- **d)** Under what condition Norton theorem is applicable.
- e) What is the condition of symmetry in two port network to obtain H
- What is the difference between incident graph and oriented graph.
- g) What could be the maximum number of branches in a graph with in number of nodes.
- **h)** Write the disadvantages of constant K filter.

j) State and explain thevnin theorem.

Part – B (Answer any four questions)

- Q3 a) A series RC Circuit with R = 10 Ω and C = 4 μ F as an initial charge of 800 μ C on the capacitor at that time the switch is closed applying a constant voltage of 100 volt. Find resulting current transient if the charge is
 - (i) of same polarity as deposited by source
 - (ii) of opposite polarity
 - **b)** Find H parameter of given network

- Q4 a) Find (10)
 - (i) value of C_S
 - (ii) input impedance
 - (iii) secondary current
 - (iv) voltage across the capacitor

input to primary is 20 mV at a frequency of 1MHz and secondary is tune to this frequency

- **b)** For a 2-port network express A B C D parameters in terms of Y parameter. (5)
- **Q5 a)** Derive all the expression for a T section band elimination filter with cutoff frequency f_1 & f_2 and characteristics impedance. (10)
 - **b)** Draw the graph select a tree, write tieset and solve all branches current. (5)

(5)

Q6 a) State and explain maximum power transfer theorem.

(10)

b) Find the value of R_L under maximum power condition.

(5)

Q7 a) Find driving point impedance and draw pole – zero diagram.

b) Use the fourier transform to find $i_0(t)$ in the circuit. $I_0(t) = 20 \text{sgn}(t) \text{ Amp.}$

Q8 a) Write short note any two

- (i) Tellegen theorem (ii)Compensation theorem(iii) Band pass filter
- **b)** Switch is closed t = 0 with network previously unenergised find $I_1(t)$ & (5) $I_2(t)$

Q9 a) Verify the Tellegens Theorem for the given network. n=5

(10)

b) Find the number of trees and number of cutsets.

(5)

21