Registration No:														
Total No	umber of Paç	jes: 03	210			210			210			210	<u>B.TECH</u> PEE3I001	210
3 rd Semester Regular Examination 2016-17 ELECTROMAGNETIC THEORY														
		E	LECT					HE	ORY					
BRANCH: EE Time: 3 Hours														
210	210	²¹⁰ Max Marks: 100							210		210			
Q.CODE: Y691														
Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.														
The figures in the right hand margin mulcate marks.														
04	A 41 4		<u>art – A</u>							,			(0 40)	
Q ₂₁₀ a)	Answer the f The curl of gr									р туре	?	210	(2 x 10)	210
, L.\		ii) 1 (iii)	, ,				1. cc	1	1					
b)	In spherical co-ordinate system, the value of differential volume (i) $r \sin\theta dr d\theta d\emptyset$ (ii) $r^2 \sin\theta dr d\theta d\emptyset$ (iii) $r^3 \sin\theta dr d\theta d\emptyset$ (iv) None													
,	of these.										,			
c)	The potential (i)	Line (ii			_									
²¹⁰ d)	In electrostati	ic screen	ing or s	hieldi	ng ele	ectric	field			is	·	210		210
e)	(i) 0 (ii) 1 (iii) -1 (iv) None of these. In magneto static fields if no sources or sinks are present, then $\nabla .B =$													
,	(i) 1 (ii) 0 (iii) J (iv) None of these.													
f)	$\nabla XH =$ will represent Ampere's circuital law in differential form. (i) J (ii) –J (iii) B (iv) None of these.													
g)	One of the following is not a source of magneto static fields.													
(i) A ₂ dc current in a wire (ii) A permanent magnet (iii) An acceler charge										acceler	ated		210	
	(iv) An electric field linearly changing with time.													
h)	h) The concept of displacement current was a major contribution attributed to													
_	(i) Farada) Max					_					
i)	Which of the (i) It may		-			t true	of a p	hasor	: ?					
210	(ii) It is a t	time-dep	endent	quanti	ity	210			210			210		210
(iii) A phasor V_s may be represented as $V_0 < \theta$ or $V_0 e^{j\theta}$ where $V_0 = V_s $ (iv) It is a complex quantity.														
j)	In a certain m	nedium, I	E=10 cc	os(10 ⁸	³ t-3y)	a_x	V/m.							
	What type (i) Fre	of mediu e space	m is it	?										
		ssy dielec	etric											
210		ssless die				210			210			210		210
	(iv) Per	fect cond	iuciof.											•

- Q7 a) State Ampere's circuit law. A hollow conducting cylinder has inner radius 'a' and outer radius 'b' and carries current I along the positive z-direction. Find H everywhere.
 b) The magnetic field intensity in a certain conducting medium is H= xy²ax + (5)
 - The magnetic field intensity in a certain conducting medium is $H = xy^2 a_x + x^2 z a_y y^2 z a_z$ A/m

 (i) calculate the current density at point P(2,-1,3).
 - (i) calculate the current density at point P(2,-1,3). (ii) what is $\frac{\partial \rho_v}{\partial t}$ at P?
- Q8 a) Derive poynting theorem & poynting vector using Maxwell's equation in electromagnetic wave propagation. (10)
 - **b)** In a nonmagnetic medium, $H=0.2e^{-y}\cos(2\pi x 10^8 t 5y)$ a_z A/m (i)Find ε_r and σ (ii) Obtain E.
- Q9 a) Derive time-varying electric scalar potential V(x,y,z,t) and magnetic vector potential A(x,y,z,t) to satisfy wave equation.
 - **b)** A medium is characterized by $\sigma = 0$, $\mu = 2\mu_0$ and $\varepsilon = 5\varepsilon_0$.

 If $H=2\cos(\omega t 3y)$ a_z A/m, Calculate ω^{10} and E.
- 210 210 210 210 210 210 210
- 210 210 210 210 210 210 210
- 210 210 210 210 210 210 210