Registra	ation No:														
Total Number of Pages: 3 210 210 210 210 210							210	<u>B.TECH</u> PET3I103	-						
210	²¹⁰ Answer Pal	rt-A w	/hic	SIO BF ²¹⁰ N ch is	GNA RANG Tir Max Q.0 G CO	Regular Examination 2016-17 SNAL & SYSTEMS ANCH(S): ECE, ETC Time: 3 Hours lax Marks: 100 Q.CODE: Y603 compulsory and any four from Part-B. ight hand margin indicate marks. (Answer all the questions) Stions: $dsh fill up type$ L. (energy/power/neither energy nor power) $c(n) = e^{j\frac{\pi}{3}n} \text{ is} \qquad \qquad$									
Q1 a) b) c) d)	210 210 210 210													21	
e) f) 210 g) h)	For finite anti-causal sequence the ROC in Z-transform is The normalized cross-correlation sequence $\rho_{xy}(l) = $ The exponential form of Fourier series of a periodic signal $x(t)$ with period T is defined by														
j) Q2. a) b) c)	If the DFT of Answer the Describe all- Describe ele	f $x(n)$ = follow-zero sementary	$= X^{0}$ ving yster $= x^{0}$ $= x^{0}$ $= x^{0}$	(K), g que em w ignal n) =	then stio ith and s: ur u(n)	ns: S n exa nit sa	Short mple mple	ansı sequ	wer t	and	ram		l.	(2 x 10)	211
d) 210 e)		vhethe ental po reversa	r $x($ erio	(n) = d. roper	<i>sin</i> ty in	Z-tra	ınsfoı	rm wi	th its			If perio	odic 210		21(

g) Define zero padding and its importance.

is commutative.

step sequence.

h) State and prove time shifting property of Fourier transform.

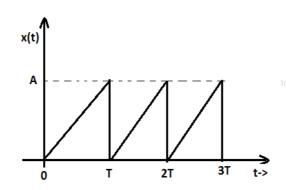
Prove $[x_1(n) * x_2(n)] = [x_2(n) * x_1(n)]$, i.e. convolution for LTI system

Plot the discrete time sequence y(n) = -2u(-n-2), where u(n) is unit

Part - B (Answer any four questions)

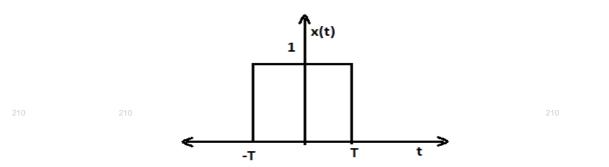
- Q3 a) Draw the direct form-I and form-II realization of the LTI system given as 2y(n) + y(n-1) 2y(n-3) = x(n-1) + x(n-3). (10)
 - b) State the relationship between convolution and correlation and prove if. (5)
- Q4 a) Determine the response of the LTI system whose input x(n) and impulse response h(n) are given by, $x(n) = {1 \choose 1}, 2, 3, 1$ and $h(n) = {1, \frac{2}{1}, 1, -1}$. Use graphical method to solve.
 - **b)** Prove that for convolution of LTI system the distributive property holds. (5)
- Q5 a) Derive convolution sum of LTI system and state its properties. (10)

 Show that the necessary and sufficient condition for a relayed LTI. (5)
 - Show that the necessary and sufficient condition for a relaxed LTI system to be BIBO stable is $\sum_{n=-\infty}^{\infty} |h(n)| \le M_h < \infty$, for some constant M_h .
- **Q6**° a) Determine the response of LTI system governed by the difference equation, y(n) 0.5y(n-1) = x(n), for input $x(n) = (5)^n u(n)$, and initial condition y(-1) = 2. Use one-sided z-transform property.
- **b)** Find the Z-transform with its ROC for $n^2u(n) 3^nu(-n-1)$. (5)
- Q7 a) Find the inverse Z-transform of the following


 (10)

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$
210
210

using partial-fraction expansion method. **b)** Compute 4-point DET of the causal three sample sequence given by


b) Compute 4-point DFT of the causal three sample sequence given by
$$x(n) = \begin{cases} \frac{1}{3} : 0 \le n \le 2\\ 0 : otherwise \end{cases}$$

Q8^o a) Determine the Trigonometric form of Fourier series of the ramp signal (10) shown below

210 210 210 210 210 210 210 2

b) Determine the Fourier transform of rectangular pulse shown below (5)

- Q9 a) Determine the total response $y(n), n \ge 0$ of the system described by the second order difference equation y(n) 2y(n-1) 3y(n-2) = x(n) + 4x(n-1), when the input signal is $x(n) = 2^n u(n)$ and with initial condition y(-2) = 0, y(-1) = 5.
 - **b)** Consider the following two sequences $x_1(n) = \{2,3,1,4\}$ and $x_2(n) = \{5,2,1\}$. Find the circular convolution of $x_1(n)$ and $x_2(n)$.

210 210 210 210 210 210 210 210 210

210 210 210 210 210 210

210 210 210 210 210 210 210 2

210 210 210 210 210 210 210

210 210 210 210 210 210 210