Registra	tion No:											
Total Number of Pages: 04 210 210 210									210	<u>B.TECH</u> PET3I001	210	
				NDUC' NCH(S) Time: 3	TOR D : ECE, E Hours	EVIC						
210	210				rks: 100 E: Y704		210		210		210	
		er Part-A he figures		-	•	•			-B.			
		I	Part – A (Answer	all the q	uestioi	ns)					
Q1	Part – A (Answer all the questions) Answer the following questions:									(2 x 10)		
²¹⁰ a)	In modern M (i)high purity silicon (iv) ep	silicon (ii	i) high pui	ity silica					lline		210	
b)	Majority carr (i)dopnats (ii		•		•							
210 c)	Which semic (i)Silicon (ii)			_			210		210		210	
d)	Which capac (i)depletion (_						
e)	The current can be investigated in SBD by the process of								210		210	
f)	In which region the temporal response of an MOS capacitor is slowest. (i)accumulation (ii) flat band (iii) inversion (iv) depletion											
g)	The energy g (i)1.42 eV (ii					•••••	•••••					
₂₁₀ h)	Switching tire and(i) pico, nano							order o	of ₂₁₀		210	
i)	How many of (i)4 (ii)14 (iii)	_		es the ge	rmanium	have?						
j)	A germanium I_c =1.3 mA, T_c (i)4.33 (ii) 43	he commo	on emitter	gain is .			ng to i _I	₃ =300 μ	uA and		210	

Q2		Answer the following questions: Short answer type	(2 x 10)
210	a)	An electronic engineer is searching a low band gap semiconductor material for showing its transparency behavior at third communication window (λ = 1550 nm). What will be the energy gap of above semiconductor at same communication window?	
	b)	How does long and short diode depend on diffusion length and neutral region length?	
210	c)	Draw energy band diagram of pn junction in thermal equilibrium and under reverse bias condition.	
	d)	Identify the necessary conditions for one sided junction diode.	
	e)	The fundamental equation for semiconductor is given by $n_0p_0=n_i^2$ (Symbols have their usual meaning).	
210		Interpret the above equation. 210 210 210	
	f)	What do you mean by base width modulation? Plot a graphical representation for envisaging early effect.	
	g)	The charge neutrality equation for MOS capacitor is given by $Q_m+Q_{ss}=0$. (Symbols have their meaning).	
210	• \	Elaborate the above statement.	
	h)	Difference between rectifying and non-rectifying barrier.	
	i)	Show a graph for comparing the forward bias IV characteristics of SBD and PND.	
	j)	Find out the thermal equilibrium electron concentration in GaAs at E _f =E _c .	
210		210 210 210 210 210	
		Part – B (Answer any four questions)	
Q3	a)	Discuss metal-semiconductor junction device. Study current-voltage characteristics from it	(10)
210	b)	A pn junction diode and Schottky barrier diode have equal cross sectional area and have forward biased current of 0.5 mA. The reverse saturation current of the Schottky diode 9 nA. The difference forward bias between two diode is 0.3 V. Determine the reverse saturation current of the pn junction diode.	(5)
210		210 210 210 210 210 210	

- Q4 a) Draw the energy band diagram of MOS capacitor. Discuss C-V characteristics of the MOS capacitor for different operating conditions
 - **b)** Write short notes on flat band condition including supporting expression and diagram. (5)
- Q5 a) Derive an expression for concentration of electron and hole in compensated semiconductor. (10)
 - **b)** How does Fermi energy level vary with doping concentration and temperature? Mention the mathematical equations for the same. (5)
- Q6 a) A pn junction profile is shown in figure 6(a) at zero bias. (10)

Determine the following

- (i) built-in potential
- (ii) Width of the depletion region
- (iii) Draw energy band diagram corresponding to above graph.
- (iv) Plotelectricfield versus distance of the junction
- **b)** Draw and explain the structure of n and p-MOS transistor.
- Q7 a) Mathematically describe for excess minority carrier expression in base region in forward active mode for n-p-n transistor. Also obtain an equation for collector current.
 - b) The emitter and base f a silicon npn transistor are uniformly doped at impurity concentration of 10¹⁷ cm⁻³ and 10¹⁵ cm⁻³ respectively at V_{BE}=0.75 V having base width of 1 μm and diffusion length L_B=5 μm. Calculate the excess minority carrier concentration at (i) x=0 (b) x=0.25W_B.

(5)

Q8		Consider a semiconcurrent with the exponentially as N Calculate: (i) (ii)	same. Assumed $A(x)=N_{d0}e^{-\alpha x}$ over $A(x)=N_{d0}e^{-\alpha x}$	e that the doi the range of [0,0] e electric-field ov	nor concentratio	on varies . 210	(10)	
	b)	Derive an expression	on for Einstein re	elation of semicor	nductor.		(5)	
210 Q9	a)	Differentiate drift each. Show graphic					(10)	
	b)	The hole concentration in silicon at T=300 K varies as $p(x)=10^{18} e^{-0.096x} cm^{-3}$, where x is meter in nm. If the hole diffusion coefficient is 0.36 cm ² s ⁻¹ , then						
210		determine the diffu	sion current dens	sity as a function	of x.	210		
210		210	210	210	210	210		
210		210	210	210	210	210		
210		210	210	210	210	210		
210		210	210	210	210	210		