Registra	ation No:								
Total Number of Pages: 03 B.TECH									
210	210 210 210 210 210 210	PET3I104							
210	3 rd Semester Regular Examination 2016-17 DIGITAL ELECTRONICS BRANCH: ECE, ETC Time: 3 Hours Max Marks: 100 Q.CODE:Y530 Answer Part-A which is compulsory and any four from Part-B.210 The figures in the right hand margin indicate marks.	21							
Q1	Part – A (Answer all the questions) Answer the following questions:	(2 x 10)							
a)	The decimal equivalent of Binary number 11010 is	(2 X 10)							
b)	(A) 26 (B) 36 (C) 16 (D) 23 -8 is equal to signed binary number								
₂₁₀ b)	(A) 10001000 (B) 00001000 (C) 10000000 (D) 11000000	21							
c)	Pick the correct choice: $x + xy =$								
d)	(A) $x(B) y(C)1(D) 0$ Which of the following is the fastest logic								
u,	(A) TTL (B) ECL (C) CMOS (D) LSI								
e)	The device which changes from serial data to parallel data is								
210	(A) COUNTER (B) MULTIPLEXER (C) DEMULTIPLEXER (D) FLIP-FLOP 210 210 210 210	21							
f)	A ring counter consisting of five Flip-Flops will have								
۵.۱	(A) 5 states (B) 10 states (C) 32 states (D) Infinite states.								
g)	Each Flip-flop stores bit(s) A. 1 bit B. 8 bit C. 16 bit D. 2 bit								
h)	State True or False: Excess-3 is a reflective code.								
i)	State True or False: EPROM contents can be erased by exposing it to X-Rays								
210 j)	State True or False: The output of a logic gate is 1 when all its inputs are at logic 0. The gate is either a NOR or an EX-NOR.	21							
	10g10 ov 1110 gmo 19 01mot 01 t 01 01 mt 211 1 01t.								
Q2	Answer the following questions:	(2 x 10)							
a) b)	Using 10's complement, subtract 72532 - 3250. Find the Unknown base (240) ₁₀ =(1430) _x								
c)									
d)									
e)	Prove the Distributive property of Boolean Algebra.								
g)	f) Draw a 2 bit by 2 bit Binary Multiplier circuit.g) What is the maximum positive and maximum negative number that can be								
represented by a 4 bit binary number using-									
	(i) 1's Complement notation. (ii) 2's Complement								
²¹⁰ h)	notation. Why a pulse transition circuit is used in the clock circuit of an edge triggered JK Flip Flop.?	21							

En	S	R	Next State of Q
0	X	X	
1	0	0	210
1	0	1	210
1	1	0	
1	1	1	

j) What is a PAL? Give an example.

Part – B (Answer any four questions)

Q3° a) Simplify the following Boolean functions T1 and T2 to a minimum number of literals: (10)

	A	В	C	<i>T</i> 1	<i>T</i> 2
	0	0	0	1	0
210	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	0	1
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	0	1

b) Express the following Boolean function as a product of maxterms. F = xy + x'z

Q4 a) Minimize and design the function $f(A,B,C,D)=\Sigma(0,1,3,5,7,8,9,10,11,12,14)$ using K-map. Find all the prime implicants and essential prime implicants.

- **b)** What do you mean by positive logic and negative logic? Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.
- Q5 a) Twelve months of a calendar are represented by a 4 bit binary representation, where 0010 represents January, 0011 represents February and so on. Design a switching circuit which will light up an LED when fed with the 4 bit input pattern corresponding to a month having 31 days. Use minimum number of NAND gates.

b) Convert : **(5)**

(i)
$$(10110.0101)_2 \rightarrow ($$
)₁₀
(ii) $(F00D)_{16} \rightarrow ($)₂

(ii)
$$(100D)_{16} > (100D)_{16} > (100D)_{1$$

(iii)
$$(1001001.01)_8 \rightarrow ($$
 $)_{16}$

(iv)
$$(365)_{10} \rightarrow ()_8$$

(v)
$$(1111101111011110)_2 \rightarrow ()_{16}$$

(10)

(5)

- **b)** (i) Convert $(10110)_2$ to Gray code.
 - (ii) Simplify the expression using Boolean algebra.

$$F = \overline{A\overline{B} + ABC} + A(B + A\overline{B})$$

- Q7 a) Draw the state diagram of a MOD-3 counter. Write its excitation table and draw the circuit diagram of a MOD 3 synchronous counter using JK Flip Flops. (10)
 - **b)** Design a shift left SISO register using D Flip Flops. Show how a pulse 0101 is shifted using this type of register. (5)
- Q8 a) Draw the circuit diagram of a Master-slave J-K flip-flop using NAND gates.
 What is race around condition? How is it eliminated in a Master-slave J-K flip-flop?

 (10)
 - **b)** Write a short note on PROM. (5)
- **Q9 a)** Design a combinational circuit that gives a binary output equal to the square of binary-coded decimal numbers 0 through 9 using ROM.
 - **b)** Implement a two input NAND and a two input NOR gate using the following logic styles (5)
 - (i) DTL logic
 - (ii) CMOS Logic.