Registration No.													
210 210 210 210 210 210 Total number of printed pages - 04							B.TE	CH					
3 rd Semester Regular Examination 2016 - 17 MECHANICAL OPERATIONS BRANCH: Chemical													
210		210		Ma	ax Ma	3 Hoo rks : Code		5	210		210		
Answer Part-A which is compulsory and any four from Part-B. The figures in the right-hand margin indicate marks. Assume suitable notations and any missing data wherever necessary.													
210			Answer								210		
1.	(a)	Answer the The value granular m	ne follo	wing o	questio ent of	ons : flowa		(K) foi	r free-	flowing		10	
210		ii. 210 iii.	0.0 to 0 0.3 to 0 0.6 to 0 0.9 to 1	.6 210 .9		2	210		210		210		
	(b)	Bond's lav i. ii. iii.		licable 0.5 0	for fee	ed size	betwe	en	_ to	_ mm.			
210	(c)	For effect between _ i. ii. iii.	tive grii to 20 to 45 30 to 55 40 to 65 50 to 75	5 5 5 5	_ % of	the cri	tical sp	eed.					
210	(e)	screen? i. ii. iii.	200 me 200 μm 200 mm 200 cm	210 sh		2	210		210		210		
210	(<i>G)</i>	materials. i. 210	conduction	tive ₂₁₀			210	.o 3 0 1	210		210		0000

		The size and balais is a							
		The size analysis is as Average diameter,	0.0252	: 0.0178	0.0126	0.0089	0.0038		
		D _{pi avg} (cm)	0.0232	0.0176	0.0120	0.0009	0.0036		
210		Mass fraction, xi (g/g)	0.088	0.178210	0.293	0.194	0.247	210	210
		Find the specific surfa	06						
		the clay material.							
	(b)	Discuss in brief the th	solids.	09					
4.	(a)	A crusher takes rock							
	` '	m and crushes it to a							
210		is 0.018 m, at a rate of		210	210				
210		684 kg _f .m/s of power	210	2.10					
		empty.							
		i. What would							
		capacity, if product is 0							
		ii. How much							
		(i) by Kick's		odia be	required	unaci o	orialitions	10	
210	(b)	Discuss in brief the fa		ecting th	e size o	f the pro	duct in a	210	210
	` ,	ball mill.	05						
5.	(a)	Discuss in detail the							
	/L-\	diagrams.		:	ممالمها			10	
	(b)	Describe the operation with a neat diagram.	on of an	induced	i roli ma	ignetic s	eparator	05	
		with a fieat diagram.							
210 6.	(a)	Mention the laws	210	210					
	()	construction and oper							
		neat diagram.	4+6						
	(b)	A sample of bauxite				_			
		classifier. The ore pa							
		microns. The mixture							
210		bauxite (specific grave and the third fraction		210	210				
		Assuming the flow to	•						
		estimate the size rang			-	g any w	an 01100t,	05	
			,						
7 .	(a)	A sludge filtered in a							
		such nature that the fi							
		volume of filtrate ob							
210		constant. 30 m ³ of filtr	210	210					
		water is forced throug i. What is the							
		ii. If the filteri							
		other condi	•		•				
		it take to pro				10			
	(b)	Briefly discuss the co	nstructio			of a rota	ary drum		\sim
210		filter with a neat diagra	am.	210		210		05	Page 3
210		210 2		210		210		210	Pac

8	8.	following equip	ments with the	eir neat diagram	d operation of t		
	210		trostatic precip w conveyor	210	210	07 210 08	210
	9. (a)	A flat blade to vertical tank. T m in diameter, tank. The tank % caustic soda 1.5 gm/cm ³ . T fitted with four be the power mixture? Data	61 he 50 of is 210 vill	210			
		N _{Re}	10,000 6 5.8	0,000 80,00 6.0 6.0		07	
	(b)	Discuss briefly		onstruction and	operation of a		
:	²¹⁰ (c)	blender with a Discuss briefly	neat diagram. about the nuc	leation and crys	stal growth steps	of 04	210
	()	crystallization		,	J 1	04	
:	210	210	210	210	210	210	210
:	210	210	210	210	210	210	210
:	210	210	210	210	210	210	210
:	210	210	210	210	210	210	Page 4