Registra	ation no:									
Total Number of Pages: 02 210 210 210 B					B.Tech SCP1207					
3 rd Semester Back Examination 2016-17 PHYSICS OF SEMICONDUCTOR DEVICES BRANCH(S): AEIE, CSE, ECE, EIE, ETC, IT, ITE Time: 3 Hours										
210	210		Max Marks		210	210	2			
	Answer Questic The fig		•	Isory and	•		t.			
Q1	Answer the following	lowing quest	ons:				(2 x 10)			
₂₁₀ a)	The electrons in	r crystals occu	ipy certain							
	excluded from predicts the a		0,							
b)	describing it. Distinguish bety	veen direct ba	and gap se	miconduc	tor and indir	ect band				
,	gap semiconductor.									
c)	Calculate the co-efficient of diffusion for positive charge carriers in germanium at room temperature. The hole mobility for germanium may									
210	be taken as 1900cm ² /VS.									
d)	Draw the plot of variation of E _F with doping concentration.									
e) f)	Explain the variation of conductivity of semiconductor with temperature. Draw k-space diagrams of Si and GaAs.									
g)	In what type of application of BJT, Hybrid-Pi model is used?									
h) i)	What do you mean by carrier generation and recombination? What is the value of surface potential under flat band condition?									
210 j)	What is pinch of	•	210		210	210	2			
Q2										
a)	Write the expre donor and acce freeze out condi	eptor energy	states. Dis	cuss con	nplete ioniza		(5)			
210 b)	The forbidden energy gap in silicon is 1.1eV. The effective density of states both in conduction band and valence band is assumed to be $2.41 \times 10^{19} cm^{-3}$. Calculate the intrinsic electron concentration in Silicon at room temperature.						(5)			
Q 3	Derive the expre	ession for exc	ess minorit	y carrier e	electron cond	entration	(5)			
,	in the forward a						. ,			

210	b)	base doping of $N_B = 5 \times 10^{16} cm^{-3}$ and a collector doping of $N_C = 2 \times 10^{15} cm^{-3}$. Assume the metallurgical base width is 0.7 mm. Calculate the change in neutral base width as the collector-base voltage changes					
Q4		from 2 to 10 V.					
Q-	a)	Define threshold voltage. Derive an expression for threshold voltage of a MOS capacitor.	(5)				
210	b)	In certain experiment in semiconductor device laboratory, a student measure depletion layer capacitance C_d against reverse bias voltage V_R of a typical PN junction. She obtained a straight line on graph paper by taking $\frac{1}{C_d^2}$ along Y-axis and V_R along X-axis. The slope of the line was					
		$2 \times 10^{23} F^{-2} V^{-1}$ and intercept was -0.84V. Calculate the doping concentrations in p-side and n-side of the pn junction if its cross-sectional area was $1.0 \mu m^2$.					
Q5							
210	a)	Derive an expression for built-in potential barrier of a uniformly doped abrupt pn junction in thermal equilibrium with necessary energy band diagram.	(5)				
06	b)	For a Si pn junction, at T = 300K with zero applied bias has doping concentrations of $N_d = 6 \times 10^{16} cm^{-3}$ and $N_a = 4.5 \times 10^{15} cm^{-3}$. Determine x_n, x_p and space charge width W. Given $n_i = 1.5 \times 10^{10} cm^{-3}$, $\epsilon_s = 11.7 \epsilon_0$ with $\epsilon_0 = 8.85 \times 10^{-14} C^2 N^{-1} cm^{-2}$.	(5)				
Q6 ₂₁₀	a)	What is threshold inversion in a MOS capacitor? Derive the expression for Flat-band voltage of a MOS capacitor with p – type semiconductor substrate.	(5)				
Q7 °	b)	Calculate the flat band voltage for an MOS capacitor with a p-type semiconductor substrate doped to $N_a=10^{16}cm^{-3}$, a silicon dioxide insulator with a thickness of $t_{ox}=200A^0$, an n+ poly-silicon gate and an oxide charge of $Q_{ss}'=8\times10^{10}cm^{-2}$.	(5)				
Q1	a)	Derive the expression for induced electric field for a non-uniformly doped n – type semiconductor and the Einstein's relation between diffusion co-efficient and mobility.	(5)				
	b)	What do you mean by CMOS technology? Sketch the cross section of a CMOS structure. Discuss what is meant by latch-up in a CMOS structure.	(5)				
210 Q8		Write short notes on any two of the followings:	(5 x 2)				
ΨÜ	a)	MOSFET V_T and Body effect.	(J A Z)				
	b)	Breakdown mechanism in Transistor.					
	c)	N-Channel MOSFET and P-Channel MOSFET.					
	d)	C-V Characteristics of MOS Capacitor.					