Tota. number of printed pages - 7 B.Tech
BE 2101 (New)/BENG 1105 (Old)

Second Semester Examination – 2010 BASIC ELECTRONICS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- Answer the following questions: 2×10
 - (a) Explain the difference between analog, digital and discrete-time signal.
 - (b) A signal is represented by y = 5sin (628t + P.T.O.

- 30°). Find the frequency, amplitude and initial phase of the signal.
- (c) What is meaning of CMRR of an OPAMP?
 How it affects the performance of the OPAMP?
- (d) Why voltage series feedback is most commonly used in amplifiers?
- (e) Derive the expression for collector current for a CE transistor.
- (f) Write down the advantages of a negative feedback amplifier.
- (g) Define the term h_{fe}, h_{ie}, h_{oe} and h_{re} of a transistor.
- (h) What is the relationship between the period of a waveform and its frequency?

Contd.

2

BE 2101 (N)/BENG 1105 (O)

(i) What do you mean by digital waveforms and explain rise time, fall time and pulse width by drawing the pulse characteristics?

- (j) What do you mean by 3 sate gate, what is its importance in combinational circuit?
- 2. A crystal diode having an internal resistance $r_{_{f}} = 10~\Omega \ \, \text{is used for center tapped full}$ wave rectification. If the applied voltage is V = $50 \sin{(\pi t)} \ \, \text{and the load resistance is R}_{_{L}} = 1~k\Omega,$ determine the followings :
 - (a) Draw the input and output voltage and current waveforms.
 - (b) The efficiency of the circuit. 3
- (c) The Ripple factor. 3

 BE 2101 (N)/BENG 1105 (0) 3

 P.T.O.

3. (a) Write ideal characteristics of an opamp.

4

- (b) Draw circuits for both inverting and noninverting amplifiers using opamp. Derive an expression for the gain of an inverting amplifier.
- (a) A negative feedback amplifier has open loop gain 10⁵ and closed loop gain 100.
 - (i) Determine feed back factor. 2
 - (ii) If a manufacturing error results in a reduction of open loop gain to 103, what closed-loop gains results?
 - (iii) What is the percent change in closedloop gain corresponding to this change in open loop gain?

 (b) Explain the Bandwidth Extension and Reduction in Non-linear distortion properties of negative feedback amplifier.

- (a) Explain the difference between Voltage divider bias and Self bias circuits.
 - (b) For the circuit shown below, determine I_B , I_{CQ} , V_E , V_{CEQ} and V_B where symbols denote their usual meaning. 1.5×5

 (a) State and explain the function of the sweep generator in an Oscilloscope.

5

BE 2101 (N)/BENG 1105 (O)

P.T.O.

BE 2101 (N)/BENG 1105 (O)

Contd.

- (b) Explain how phase measurement can be done using an Oscilloscope through the Lissajous method.
- (a) State the Associative and Commutative laws
 of Boolean algebra.
 2
 - (b) State De-Morgan's theorem and apply it to the following expression:3

$$Y = \overline{AB} + \overline{CD} + EF$$

- (c) Using Boolean algebra technique, simplify the following expressions: 2.5×2
 - (i) AB + A(B + C) + B(B + C)
 - (ii) $(A\overline{B}(C+BD)+\overline{A}\overline{B})C$
- (a) Apply De-Morgan's theorems to minimize the expressions:
- (i) WXYZ and W+X+Y+Z

 BE 2101 (N)/BENG 1105 (3) 6 Contd.

- (ii) WXYZ
- (iii) $\overline{A+B+C}+D(E+\overline{F})$
- (b) Determine the binary values for which the following POS expression is equal to 0. 4

 $(X+\overline{Y}+\overline{Z})(\overline{X}+Y+\overline{Z})(X+Y+\overline{Z})(\overline{X}+\overline{Y}+\overline{Z})(X+\overline{Y}+\overline{Z})$
