Registration No. :							,		
Total number of printed pages – 3								B.	Tech
							F	RF 210	6 (N)

Second Semester Examination – 2011 DATA STRUCTURE USING 'C'

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is a stack? Discuss the POP operation of any stack.
- (b) Convert the following infix expression into its equivalent postfix and prefix expressions:

$$a++-b+++--c/d+e*f$$

- (c) Write at least two disadvantages of linear queues.
- (d) How are collisions handled in linear probing? Discuss with a simple example.
- (e) For a list L = { 8,99,3,4,6,10 } find the output list at the end of pass 1 using bubble sorting method.
- (f) What is the use of a head node in a linked list?
- (g) Show that the maximum number of nodes in a binary tree of height h is 2^h-1 for $h \ge 1$.
- (h) Prove with an example that a tree T with n vertices has n-1 edges.
- (i) There are 8, 15, 13, 14 nodes were there in 4 different trees. Which of them could have formed a full binary tree? Explain in two sentences.
- (j) Distinguish between digraphs and undirected graphs.
- (a) Suppose a two dimensional matrix is represented using a row major order in C programming. Write the formula and calculate the address of element

P.T.O.

		type.	5						
	(b)	What is a circular queue ? Why is it better than a normal queue ? Given	/e						
		some practical Examples of usage of circular queue.	5						
3.	(a)	Write an algorithm and program in C to create 5 nodes of a linked list.	5						
	(b)	How are priority queues implemented using a single queue? Discuss wiexample.	ith 5						
1.	(a)	Write an algorithm to find the largest node in a Binary Search Tree.	5						
	(b)	Create a binary search tree using the following data entered as a sequent set:	ial 5						
		3 79 67 58 38 29 15 11 5							
5.	(a)	Sort the following elements using Heap sorting method:	5						
		42 23 92 16 11 45 40 64 29 18 GIET							
	(b)	Create an AVL tree using following data and show the balance factor in the resulting tree:	ne 5						
		14 23 7 10 33 56 80 75 90							
6.	(a)	Given the following inorder and preorder traversals of a binary tree Construct the binary tree: BFGHPRSTWYZ	e. 5						
		Preorder traversal: PFBHGSRYTWZ							
	(b)	Define a graph.Represent the graph shown using	5						
		(i) Adjacency matrix							
		(ii) Adjacency list							
		(iii) Incidence matrix							
		e_5							

- 7. (a) What is Dynamic Memory Management? Explain the Buddy system method of memory management with its advantages and disadvantages. 5
 - (b) Draw a hash table with open addressing and a size of 9. Use the hash function "k%9". Insert the keys: 5, 29, 20, 0, 27 and 18 into your table (in that order).
- 8. (a) An array contains the elements shown below:

44 78 22 7 98 56 34 2 38 35 45 Using the Quick sort arrange the elements of the array.

(b) An array contains the elements shown below. Using binary search algorithm trace the steps followed to find 20:

18 13 17 26 44 56 88 97