(4)

- (b) Obtain the eigen values and eigen functions of L_2 and L^2 and discuss the matrix representation of L_r and L_v .
- (a) Define Pauli spin matrices and explain their properties. Obtain the eigen functions and eigen values of spin $\frac{1}{2}$ particles.

(b) Discuss the conditions required for the addition of angular momenta and obtain the C.G. coefficients for the states with $J_1 = J_2 = \frac{1}{2}$ and $J_1 = 1, J_2 = \frac{1}{2}$.

2019

(January)

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(QUANTUM MECHANICS)

SECTION - A

- Answer any four of the following:
- (a) Explain the Dirac's bra and ket notations in linear vector space.
- (b) Discuss the expansion theorem.

- (c). What are creation and annihilation operators? Explain.
- (d) Explain the matrix representation of L_x and L_y .
- (e) Obtain the eigen values of J_x and J^2 .
- (f) Explain the closer properties of the basis set.

O

- 2. Answer all questions from the following: 2×8
 - (a) Define Linear Vector space in quantum mechanics.
 - (b) What do you mean by degeneracy?
 - (c) Define basis vector.
 - (d) Explain the properties of creation operator.
 - (e) Define Heisenberg picture.
 - (f) Define orbital angular momentum.
 - (g) What is spin? Explain.
 - (h) Give the properties of C. G. coefficients.

(Continued)

SECTION - B

Answer all questions:

16 × 4

 (a) Write about linear, adjoint and unitary operators and discuss the orthonormality of eigen vectors.

O

- (b) Explain the representations of ket and bra vectors and operators in matrix form and discuss the unitary transformation of operators.
- (a) Define interaction picture and obtain the equation of motion in interaction picture.

O

- (b) Using operator method solve the Schrödinger equation for a harmonic oscillator. Give the matrix representation of creation operator.
- 5. (a) Define orbital angular momentum operator and explain its properties. Show that L^2 commutes with L_z . Obtain the commutation relations for L_x , L_y , L_z and L^2 .