M.Sc.—Phy-IIIS (CC-302/303)

2019

(January)

Time: 3 hours

Full Marks: 80

Answer any one Group according to your specialisations

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

GROUP - I

(ELECTRONICS)

SECTION - A

1. Answer any four of the following:

4 × 4

(a) Explain the frequency response of linear amplifier.

- (b) Explain the effect of negative feedback in amplifiers.
- (c) Explain feedback criteria for oscillation.
- (d) Derive an expression for CMRR taking the example of differential amplifier.
- (e) Explain how operational amplifier working as a differentiator.
- (f) State and explain Thevenin's and Boolean theorems.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Explain how Transistor used as a switch.
 - (b) Explain the Boot-strapping the FET.
 - (c) Define Nyquist criteria.
 - (d) Explain the phase shift in phase shift oscillator.
 - (e) Explain the properties of operational amplifier.

- (f) Write down the two application of operational amplifier.
- (g) Explain AND and OR gates with truth tables.
- (h) State Thevenin's theorem in digital circuits.

SECTION - B

Answer all questions:

16 × 4

 (a) Describe the principle and working of RC and Transformer coupled amplifiers with neat circuit diagrams.

Or

- (b) Distinguish between FET and MOSFET and explain the operation of MOSFET with a neat circuit diagram.
- (a) Draw the circuit diagram of phase shift oscillator and explain its working and obtain an expression for frequency.

Or

- (b) Describe the principle and working of wien bridge oscillator with a neat circuit diagram and explain how it generates a large range of frequencies.
- (a) Give a detailed account on the dc characteristics of operational amplifier and obtain the expression for input and output impedances.

Or

- (b) Describe the working of summing and integrating amplifier using operational amplifier with a circuit diagrams.
- (a) Distinguish between RS and JK-Flip-flop and explain the worling of JK flip-flop with a circuit diagram.

Oı

(b) Explain the two methods of A/D conversion and describe the working of D/A convertor.

GROUP - II

(GENERAL THEORY OF RELATIVITY)

SECTION - A

- 1. Answer any four of the following: 4×4
 - (a) Explain the symmetric and antisymmetric tensors.
 - (b) Explain the Lagrangian of a relativistic particle.
 - (c) State and explain the equivalence principle.
 - (d) Write a note on covariant derivatives.
 - (e) Explain the Solar Red Shift.
 - (f) Explain the Algebraic properties of the curvature tensor.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define Tensor and Ricci Tensor.
 - (b) Explain the significance of 4-vectors.

- (c) State equivalence principle.
- (d) Define covarient derivatives.
- (e) Define Red shift.
- (f) What do you mean by gravitational field? Explain.
- (g) Define curvature tensor.
- (h) What is elastic scattering? Explain.

SECTION - B

Answer all questions:

16 × 4

 (a) Obtain Lorentz transformation and explain the transformation properties.

Or

- (b) Define Four-momentum and Four-force and obtain the covarient equations of motion.
- (a) Define week and strong principle of equivalence and obtain the equation of motion in presence of Gravitational forces.

Or

- (b) What are affine connection and metric tensor? Obtain the relation between Metrics tensor and Affine connection.
- (a) Define Newtonian limit and Newtonian potential and obtain the relation between Newtonian limit and Newtonian potential.

Or

- (b) Discuss the Time dilation in a gravitational Field and explain the Red shift of spectral lines.
- (a) Write a detailed note on Ricci and Bianchi identities.

Or

(b) Obtain Einstein's field equations for energy and momentum.