otal Pages-7 M.Sc.—Phy-IIIS (CEC 304/ CEC 305)

2019

(January)

Time: 3 hours

Full Marks: 80

Answer all questions from any one Group according to your specialisation

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

GROUP-I

(CONDENSED MATTER AND MATERIALS PHYSICS-I)

SECTION - A

Answer any four of the following:

 4×4

(a) State and explain de Haas-von Alphen effect.

- (b) Obtain an expression for thermal conductivity.
- (c) Explain Local density approximation in electron-electron interaction.
- (d) Write a note on Type I and Type II superconductors.
- (e) Explain Josephson effect.
- (f) Give the elementary ideas of high Tc superconductors.

Or

- 2. Answer all questions from the following: 2×8
 - (a) What are phonens? Explain.
 - (b) Define electrical conductivity.
 - (c) What are the advantages of Hartree-Fock approximation?
 - (d) What do you mean by local density?

- (e) Explain energy gap in superconductivity.
- (f) Define superconducting transition.
- (g) What are Quasi electrons? Explain.
- (h) Define what is electron gas.

SECTION-B

Answer all questions:

16 x 4

(a) Describe the OPW and Pseudo-potential methods for the calculation of band energy.

Or

- (b) Explain relaxation approximation method and obtain an expression for electrical conductivity.
- (a) Distinguish between Hartree approximation and Hartree-Fock approximations in electronelectron interactions and explain Hartree approximation.

Or

- (b) Describe in detail the density functional theory and explain its advantages.
- (a) Discuss the occurrence of superconductivity and explain Meissner effect.

O

- (b) Obtain London equation and discuss the qualitative ideas of BCS theory.
- (a) Explain Electron -Phonon interaction and discuss the significance of cooper pairs in superconductivity.

Or

(b) Explain the ground state of superconducting electron gas and write a note on high Tc superconductors.

GROUP-II

(NUCLEAR SCIENCE-I)

SECTION-A

- 1. Answer any four of the following: 4×4
 - (a) Explain the eigen functions of angular momentum operator.
 - (b) Write a note on irreducible spherical tensor.
 - (c) Give the salient features of optical model.
 - (d) Give briefly the vibrational modes of a spherical nucleus.
 - (e) Write a note on quadrupole deformation.
 - (f) Explain the electric quadrupole moment and magnetic dipolemoment.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define rotation matrices.

- (b) Define the irreducible spherical tensor.
- (c) Give the concept of optical model.
- (d) What do you mean by complex potential? Explain.
- (e) Define moment of inertia.
- (f) Define coupling of a particle.
- (g) Define nuclear deformation.
- (h) Define magnetic dipole moment for an even-even nuclei.

SECTION-B

Answer all questions:

16 × 4

 (a) Discuss the Rotational invariance in three dimensions and explain the explicit representation of the rotation matrices.

Or

(b) Explain the addition of angular momenta and obtain Clebsch-Gordon coefficients. (a) Describe the optical model at low energies for nuclear reactions.

Or

- (b) Discuss the theory of stripping and pick up reactions.
- (a) Discuss in detail the collective vibrational modes of a spherical nucleus.

Or

- (b) What are collective oscillation? Describe the liquid drop model.
- (a) Explain the rotational spectra of even-even nuclei.

Or

(b) Explain the coupling between modes of collective excitation and discuss the electric quadrupole moment.