2019

(January)

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(TOPOLOGY)

SECTION - A

- 1. Answer any four from the following:
- 4×4
- (a) Prove that if F is a closed set, then CF is an open set.
- (b) Show that the union of two topologies for a set need not be a topology for the set.
- (c) If every two points of a set are contained in some connected subset of E, then prove that E is a connected set.

(d)	What are the propertie	es of a T_0 -space and a
	T ₂ -space?	B:

- (e) What is a hereditary property of a first axiom space?
- What is the difference between box topology and product topology?

Answer all the questions:

2×8

- (a) State Urysohn's metrization theorem.
- (b) State axioms of constability.
- (c) What is a base for a topology?
- (d) Define lower-limit topology.
- (e) Define first and second axiom spaces.
- Define regular and normal spaces.
- (g) What is regularity?
- (h) When a space is completely regular?

SECTION - B

Answer all questions:

16×4

- For any set E in a topological space, prove that $C(E) = E \cup d(E)$.
 - (ii) If E is a subset of a topological space (X, \mathcal{F}) and if $d(F) \subseteq E \subseteq F$ for some subset $F \subseteq X$, show that E is a closed set.

- (b) (i) Let X be any uncountable set, and let F be the family consisting of \phi and all complements of countable sets. Show that \mathcal{F} is a topology for X.
 - (ii) Prove that Kuratowski closure axioms.
- Show that any separation of a topological space must be into two non-empty, disjoint sets which are both open and closed.

MA/M.Sc.- Math-IS(102)

(ii) Prove that every closed subset of a compact space is compact.

Or

- (b) (i) Prove that a compact subset of a topological space is countably compact.
 - (ii) Show that the space of all ordinals less than the first uncountable ordinal, given the order topology, is countably compact but not compact.
- (a) (i) Show that in a T₁-space, no finite set has a limit point.
 - (ii) Prove that a T₁-space is countably compact iff every infinite open covering has a proper subcover.

Or

- (b) (i) If Y is compact, then prove that π_X is a closed mapping of $X \times Y$ onto X.
 - (ii) Show that D is compact and K is nowhere dense.
- 6. (a) Prove Urysohn's Metrization theorem.

Or

- (b) (i) Prove that X × Y is compact iff X and Y are compact.
 - (ii) Show that X × Y has local compactness property iff both X and Y have the same property.