Total Pages-7 MA/M.Sc.-Math-IIIS(CE-313)

2019

(January)

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(ORDINARY DIFFERENTIAL EQUATION-I)

SECTION - A

- 1. Answer any four of the following:
 - (a) Verify whether the following equation is exact, solve it:

$$3t^2x^2dt + 3t^2xdx = 0$$

(b) Solve the IVP, for $\frac{\pi}{2} \le t < \pi$ $x' + (\cot t)x = 2\csc t, x(\frac{\pi}{2}) = 1.$ (c) Solve that IVP

$$x'' + x' + 2x = 0$$
, $x(0) = 0$, $x'(0) = 2$

(d) Solve

$$x_1' = 2x_1 + x_2$$

 $x_2' = 3x_1 + 4x_2$

- (e) Calculate the successive approximations for the IVP x' = g(t), x(0) = 0.
- (f) Verify that $y(t) = e^{-t}$ is a solution of $y'(t) + \frac{1}{e}y(t-1) = 0$.

Or

2. Answer all questions:

2×8

- (a) Compute the first two successive approximations for the solution of the following equation x' = tx, x(0) = 1.
- (b) Does the following solar system x' = ax + f(t) admit periodic solution where

(i)
$$a = -1$$
, $f(t) = \sin \frac{3t}{2}$

(c) Find the general solution of $x^{(4)} - 16x = 0$.

(d) What is the order and degree of the differential equations?

(i)
$$5\frac{d^2x}{dt^2} + 2\left(1 - \left(\frac{dx}{dt}\right)^3\right)^{1/2} - x = 0$$

(ii)
$$\left(\frac{d^2x}{dt^2}\right)^3 + 7\left(\frac{d^2x}{dt^2}\right)^2 / \left(\frac{d^2x}{dt^2} + \frac{d^3x}{dt^3}\right) = x$$

(e) Solve

$$x' = -\frac{\sin t}{\cos x}$$

(f) Solve

$$x'' = 3x^{2/3}$$

(g) Solve

$$x' + \frac{3x + 2t}{x + 2} = 0$$

(h) Solve

$$x' + 2x = 0$$
, $x(0) = 3$.

SECTION - B

Answer all questions of the following: 16×4

- 3. (a) (i) Prove that $\sin x$, $\sin \left(x + \frac{\pi}{8}\right)$, $\sin \left(x \frac{\pi}{8}\right)$ are linearly dependent functions on $(-\infty, \infty)$.
 - (ii) Find the solution of the equation x'' x = 1 which vanishes when t = 0 and tends to a finite limit as $t \to \infty$.

Or

(b) (i) Solve

$$x'' + 4x = 8t^2 - 4t + 1$$

(ii) Solve

$$x'' + x' = 4t^2e^t$$

4. (a) (i) Consider

$$(1-t^2)x'' - 2tx' + 2x = 0, 0 < t < 1$$

Given $\phi_1(t) = t$ is a solution to it. Find the second linearly independent solution.

(ii) Find the particular solution by using the method of undetermined coefficients.

$$x'-7x'=(3-36t)e^{4t}$$

Or

(b) (i) Solve the Euler equation by assuming a solution of the form x(t) = f.

$$6t^2x'' + tx' + x = 0$$

(ii) Solve

$$x'' - 9x' + 20x = 0$$
, $-\infty < t < \infty$

5. (a) (i) Find the determinant of fundamental matrix $\phi(t)$ which satisfies $\phi(0) = E$ for the system x' = Ax, where

$$A = \begin{bmatrix} -1 & 3 & 4 \\ 0 & 2 & 0 \\ 1 & 5 & 1 \end{bmatrix}$$

(ii) Determine $\exp(tA)$ for the system x' = Ax, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$$

Or

(b) (i) Solve the following systems of equations

$$x_1' = 2x_1 + x_2$$

 $x_2' = 2x_2 + 4x_3$
 $x_3' = x_3 - x_1$

(ii) Prove that

$$\exp\left(\begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}t\right) = \begin{bmatrix}\cos ht & \sin ht\\ \sin ht & \cos ht\end{bmatrix}$$

- 6. (a) Consider the IVP $x'(t) = \frac{1}{1+x^2}$, x(0) = 0, $t \ge 0$, $|x| < \infty$.
 - (i) Show that the IVP has a unique non-local solution on (0, ∞).
 - (ii) Solve the above equation by the method of separation of variables and then show that the solution x(t), with x(0) = 0, satisfies $\frac{1}{3}x^3(t) + x(t) t = 0$, $t \ge 0$.

Or

(b) (i) Show that the solution of the following equation is bounded

$$x'(t) = -3x(t) + x(t-r)$$

(ii) Show that the solution of the following equation is asymptotically stable

$$x'(t) = -5x(t) + 4x(t-r), (r > 0)$$