Or

(b) (i) Solve the following matrix game by linear programming:

$$\begin{pmatrix} 1 & 0 & 4 & 1 \\ 0 & -4 & -3 & 1 \end{pmatrix}$$

(ii) Use the dominance relation to slove the following matrix game:

$$\begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 3 & 5 & 4 \\ 3 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 \end{pmatrix}$$

## 2019

(January)

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

## (OPTIMIZATION TECHNIQUES)

## SECTION-A

- 1. Answer any four of the following:  $4 \times 4$ 
  - (a) State GOMORY'S mixed integercontinuous variables algorithm.
  - (b) What are Kuhn-Tucker optimality conditions?
  - (c) Let f be a pseudoconvex function on an open convex set  $T \subset \mathbb{R}^n$ . Also, let  $\nabla f(x^*) = 0$  for some  $x^* \in T$ . Then what about  $x^*$ ?

(3)

(d) Derive the dual of the primal linear program:

Maximize 
$$v = 3x_1 + 2x_2$$
  
subject to  $x_1 + 3x_2 \le 6$ ,  
 $x_1 - x_2 \le 3$ ,  
 $x_1 + 2x_2 \le 5$ ,  
 $x_1 \ge 0$ ,  $x_2 \ge 0$ .

(e) State Farkas' lemma.

## SECTION-B

Answer all the questions :  $16 \times 4$ 

2. (a) Use Gomory's algorithm to solve the program:

Minimize 
$$Z = -9x_1 - 10x_2$$
  
subject to  $x_1 + x_3 = 3$   
 $2x_1 + 5x_2 + x_4 = 15$ ,  
 $x_1, x_2, x_3, x_4 \ge 0$  and integers.

Or

(b) Solve the following problem by the upper bounding technique: Maximize  $v = 3x_1 + 2x_2$ subject to  $x_1 - 3x_2 \le 3$ ,  $2x_1 + x_2 \le 20$ ,  $-x_1 + x_2 \le 6$ ,  $x_1 - 2x_2 \le 4$ ,  $x_1 + 3x_2 \le 30$ ,  $0 \le x_1 \le 8$ ,  $0 \le x_2 \le 6$ .

- 3. (a) (i) Let f be a pseudo convex function on an open convex set T ⊂ ℝ<sup>n</sup>. Also, let ∇f(x\*) = 0 for some x\* ∈ T. Then prove that x\* is a global minimum of f over T.
  - (ii) Let f is differentiable at x\* ∈ T and x\*
    is a local minimum of the problem
    Minimize f(x), subject to x ∈ T, then
    prove that

$$\nabla f(x^*)^T d \ge 0$$
 for all  $d \in \overline{D}(x^*)$ .

Or

(b) (i) Solve the following problem using Lagrangian multipliers:

Minimize  $f(x) = 3x_1^2 + 4x_2^2 + 5x_3^2$ subject to  $x_1 + x_2 + x_3 = 10$ .

- (ii) Find a direction z ∈ IR" along which the directional derivative of the function f at a point x ∈ IR" is a minimum.
- 4. (a) Consider the convex programming problem:

Minimize 
$$(-x_1 + x_2)$$
  
subject to  $x_1^2 + x_2 \le 0$   
 $x_2 \ge 0$ .

Show that  $x_1 = 0$ ,  $x_2 = 0$  is the optimal solution to this program. Also, is Slater's constraint qualification satisfied at  $(0, 0)^T$ ? Further, show that the Lagrangian of the problem has no saddle point.

Or

(b) (i) Prove that the Lagrangian associated with the problem:
 Minimize (x²)
 subject to 0 ≤ x ≤ 1
 must have a Saddle point and then find it.

(ii) Apply the K-T conditions to solve the following problem:

Minimize 
$$(x_1^2 + x_2)$$
  
subject to  $x_1^2 + x_2^2 - 9 = 0$   
 $-(x_1 + x_2^2) + 1 \ge 0$ 

 $x_1 + x_2 \le 1$ 

5. (a) (i) Use the dominance relations to solve the following matrix game:

$$\begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 1 \\ 5 & 2 & -1 \end{pmatrix}$$

(ii) Solve the game with the following pay- off matrix by the graphical method.

$$\begin{pmatrix}
2 & -3 & -1 & 1 \\
0 & 2 & 1 & 2
\end{pmatrix}$$