(ii) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

Or

- (b) (i) Let $f(x) \in F[x]$ be of degree $n \ge 1$. Then prove that there is an extension E of F of degree at most n in which f(x) has n roots.
 - (ii) If F is of characteristic 0 and if a, b are algebraic over F, then prove that there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).

2019

(January)

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(ALGEBRA)

SECTION - A

1. Answer any four of the following:

- 4×4
- (a) Let G be a group, H a subgroup of G, T an automorphism of G. Let $(H)T = \{hT | h \in H\}$. Prove (H) T is a subgroup of G.

- (b) If H is a subgroup of G, show that for every $g \in G$, gHg^{-1} is a subgroup of G.
- (c) Express the following as the product of disjoint cycles:

$$(1, 2, 3)$$
 $(4, 5)$ $(1, 6, 7, 8, 9)$ $(1, 5)$

(d) Compute $a^{-1}ba$, where

$$a = (1, 3, 5) (1, 2), b = (1, 5, 7, 9)$$

- (e) List all the conjugate classes in S₃ and verify the class equation.
- (f) Prove that if [a, b] = [a', b'] and [c, d] = [c', d']then [a, b] [c, d] = [a', b'] [c', d'].
- (g) In a commutative ring with unit element, prove that the relation a is an associate of b is an equivalence relation.
- (h) Find the greatest common divisor in J[i] of 3 + 4i and 4 3i.

Or

2. Answer all the questions :

 2×8

(a) Find the orbits and cycles of the following permutations:

- (b) Prove that $(1, 2, ..., n)^{-1} = (n, n-1, ..., 2, 1)$.
- (c) State Cayley theorem.
- (d) G is a cyclic group of order 12, $T: x \to x^3$, is T is a automorphism of G?
- (e) Give an example of a dihedral group of order 2n.
- (f) Define p-Sylow subgroup.
- (g) Define Euclidean ring.
- (h) State Remainder theorem.

SECTION - B

Answer all questions of the following: 16 x 4

- (a) (i) If G is a group, then prove that A(G), the set of automorphisms of G, is also a group.
 - (ii) If p is a prime number and $p \mid O(G)$, then prove that G has an element of order p.

Or

- (b) (i) If $O(G) = p^n$ where p is a prime number, then prove that $\mathbb{Z}(G) \neq (e)$.
 - (ii) Prove Sylow theorem.
- 4. (a) (i) Let R be a commutative ring with unit element whose only ideals are (O) and R itself. Then prove that R is a field.
 - (ii) Let R be a Euclidean ring and a, b ∈ R.
 If b≠0 is not a unit in R, then prove that d(a) < d(ab).

Or

- (b) (i) State and prove unique factorization theorem.
 - (ii) Find the g.c.d. in J[i] of 3+4i and 4-3i.
- (a) (i) If V is the internal direct sum of U₁, ..., U_n then prove that V is isomorphic to the external direct sum of U₁, ..., U_n.
 - (ii) Prove that L(S) is a subspace of V.

Or

- (b) (i) If ν₁, ..., ν_n are in V, then prove that either they are linearly independent or some ν_k is a linear combination of the preceding ones, ν₁, ..., ν_{k-1}.
 - (ii) If v₁, ..., v_n is a basis of V over F and if
 w₁, ..., w_n in V are linearly independent over F, then prove that m ≤ n.
- (a) (i) Prove that the element a ∈ K is algebraic over F if and only if F(a) is a finite extension of F.