Registration No.:			[V.]						
Total number of printed pages – 3								B.Tech	
									BS 1103

Second Semester Examination - 2012

CHEMISTRY - I

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Write down the time independent Schrodinger wave equation defining each term involved therein.
- (b) What are the conditions for a wave equation to satisfy?
- (c) Molecular oxygen is a paramagnetic substance. Explain
- (d) Why four phases of sulphur cannot co-exist together?
- (e) The unit cell of gold has a fcc structure, calculate the mass of a gold unit cell (M_{Au} = 197g/mol).
- (f) The half life period for the decomposition of a compound is 50 min, the initial concentration is 0.04 M. If the initial concentration is 0.08 M, the half-life becomes 100 min. What is the half-life if the concentration is 0.02 M?
- (g) What is the role of a catalyst in a chemical reaction?
- (h) Differentiate between a galvanic cell and an electrolytic cell.
- (i) Predict the sign for ΔS in Br₂(g) → Br₂(I) and justify.
- (j) State and explain Hess's law.

۷. ((a)	dissociation energies and magnetic properties.	nd 6
((b)	Calculate the de-Broglie wavelength of an electron travelling with a speed equal to 10% of the speed of light.	ed 4
3. (a)	Sketch the phase diagram of Bi-cd system labelling all the phases, curve and points.	es 8
(b)	Why the freezing point curve of ice has a negative slope in the phase diagram of water system?	se 2
4. (What is the distance between Na $^+$ and Cl $^-$ in NaCl crystal, if its densi is 2.165 g cm $^{-3}$? NaCl has fcc structure, (Atomic mass of Na = 23 amount Cl = 35.5 amu).	
(1		Explain the Schottky defects in stoichio-metric crystals. What are the consequences of Schottky and Frenkel defects in crystals?	e 6
5. (a	a)	How is the order of a reaction determined by graphical method?	4
(t	b)	Give the basic concept of the transition state theory.	2
((The values of the rate constants for a reaction at 356°C and 443°C arm $3 \times 10^{-5} \text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$ and $2.5 \times 10^{-3} \text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$ respectively. Calculat E _a for the forward and backward reaction of ΔH is 16.32 KJ mol ⁻¹ .	
6. (a		Describe the use of standard hydrogen electrode and a SCE has a voltag of 0.4 V when placed in a solution at 298 K. Calculate p^{++} of the solution (E ⁰ of SCE at 298 K = 0.2415 V).	
(b		Write the reactions involved in a dry cell. Discuss the application of hydrogen-oxygen fuel cell.	of 5
7. (a	5	Calculate the standard enthalpy of formation of n-butane given that the standard enthalpies of combustion of n-butane, C (graphite) and $H_2(g)$ are 2878.5 KJ, -393.5 KJ and -285 KJ respectively.	
BS 110)3	2 Conto	١.

(b) Show that:

2.5 + 2.5

(i)
$$\left(\frac{\partial T}{\partial P}\right)_s = \left(\frac{\partial V}{\partial S}\right)_P$$

(ii)
$$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$

8. (a) Derive Gibbs-Helmholtz equation.

5

(b) Discuss the criterion of spontaneity of an equilibrium reaction in terms of ΔG , ΔH and ΔS .

– C