Registration No.:		
Total number of printed pages – 4		Гесh
	BE:	2101

Second Semester Examination – 2012 BASIC ELECTRONICS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. Symbols carry their usual meaning.

The figures in the right-hand margin indicate marks.

1. Answer the following questions in brief:

2×10

- (a) What do you mean by frequency spectrum? Calculate the frequency and time period of the following sinusoidal signal f (t) = 5 sin (300 t).
- (b) A diode is operated at room temperature with $I_s=10^{-10}$ A and $\eta=2$. (i) What is the diode current i_D if the voltage across the diode is $V_D=0.65$ V? (ii) What voltage V_D is required for a diode current of $200~\mu\text{A}$?
- (c) A BJT has a base current of i_B = 5 μ A and a gain of β_F = 150 V/V. (i) If the BJT is operating in the forward active region, and ignoring the effect of V_A , what is the value of the collector current i_C ? (ii) If V_A = 75 V, what is i_C at V_{CE} = 5 V?
- (d) Define 'CMRR'. If the CMRR of an Op-Amp is 80 dB and the common mode gain is –0.5, what is the differential mode gain of the Op-Amp?
- (e) Why time-base is used in a Cathode Ray Oscilloscope?
- (f) A silicon sample at room temperature is doped with acceptor atoms so that $N_A = 10^{16} \text{ cm}^{-3}$ and $N_D = 0$. Is the material p-type or n-type? If $p_0 = 10^{16} \text{ cm}^{-3}$, what is the electron concentration, n_0 at room temperature?
- (g) Convert (10.01), to its equivalent binary number.

- (h) Prove that : (i) $X + \overline{X}Y = X + Y$, (ii) $AB + \overline{AB} + A\overline{B} + \overline{AB} = 1$.
- (i) What is the upper and lower limit of a DC load line for a fixed bias circuit?
- (j) With the help of a suitable example show how negative feedback increases the bandwidth of an amplifier by a factor of $(1 + \beta A_0)$, where β is the feedback factor and A_0 is the mid-band gain without feedback.
- 2. In a fixed bias circuit with emitter stabilized resistor, R_B = 560 k Ω , R_C = 4.7 k Ω , R_E = 1 k Ω , V_{CC} = 10 V, β = 80, coupling capacitors of 0.01 μ F and C_E = 0.047 μ F are used.
 - (a) Draw the circuit diagram and find the values of V_{CEQ} and I_{CQ}.
 - (b) Draw the low frequency small signal hybrid- π equivalent model and determine the value of g_m and r_π . (Assume room temperature for your calculations).
 - (c) Determine A_V and Z_i for the circuit.
- (a) Consider the half-wave rectifier circuit shown in Figure 3 (a) below. If V_{in} is a triangle wave with a peak voltage of 2 V, and the diode has V_d = 0.5 V, sketch V_{out} as a function of time on the plot of V_{in} shown in Figure 3 (a) below. Label the peak voltage of V_{out}.

Figure 3(a)

(b) For the circuit given in Figure 3(b) below, draw the output wave form for the input as shown. Assume the diodes to be ideal.

Given: $V_{R1} = 2 \text{ V}$ and $V_{R2} = 3 \text{ V}$.

Figure 3 (b)

(c) At room temperature, the diode in Figure 3(c) below has the model parameters $I_S = 10^{-9}$ A and $\eta = 2$. The dc voltage source has the value $V_1 = 2$ V. The source labeled v_1 puts out a sinusoidal voltage and can be considered to be a small-signal source. For $v_1 = 0$ V, solve for the value of R_1 which biases the diode at $I_D = 2$ mA.

 Design a potential divider stable bias circuit as shown in the Figure 4 below with a Q point of I_C = 25 mA and V_{CE} = 7.5 V. Transistor β ranges from 50 to 200.

5. For an instrumentation amplifier of the type shown in Figure 5 below, a designer proposes to make $R_2=R_3=R_4=100~k\Omega$, and $2R_1=10~k\Omega$. For ideal components, calculate the difference-mode gain, common-mode gain and CMRR. If we change $2R_1=1~k\Omega$ what value of difference-mode gain, common-mode gain and CMRR result?

Figure 5

- 6. (a) Simplify the following Boolean expression and draw its logic circuit: 5 A'BC + AB'C' + A'B'C' + AB'C + ABC.
 - (b) Design a combinational logic circuit which adds three binary bits and implement using NAND gates. 5
- 7. (a) With neat diagram, describe the operation of Wien Bridge Oscillator. 6
 - (b) Define Multiplexing and Demultiplexing. How many 8 ×1 multiplexers are used to design a 64 × 1 multiplexer?
- 8. Answer any two of the following:

5×2

- (a) AF signal generator
- (b) SR latch
- (c) BJT as a switch
- (d) Feedback amplifier.