| | | B | ACI | PA | PE | K. | | | |---------------------|------|------|--------|----|----|----|--|--| | Registration No. : | | | | | | | | | | Total number of pri | nted | page | es – 3 | | | | | | Second Semester Examination – 2012 PHYSICS - I Full Marks - 70 Time: 3 Hours Answer Question No. **1** which is compulsory and any **five** from the rest. The figures in the right-hand margin indicate marks. 1. Answer the following questions: 2 × 10 B.Tech BS 1102 - (a) What is resonance? Distinguish between amplitude resonance and velocity resonance. - (b) Explain why two independent sources of light of same wavelength cannot produce interference pattern. - (c) Write the differences between O-ray and E-ray. - (d) Why double refraction cannot occur along the optic axis of a crystal? - (e) If **E** is an electrostatic field then show that $\nabla \times \mathbf{E} = 0$. - (f) Can accelerated charged particle produce electromagnetic waves? Give reasons. - (g) What is skin depth? What are physical significance of skin depth? - (h) Prove that the rest mass of photon is zero. - State the de Broglie hypothesis. - (j) What is the role of operators in quantum mechanics? - 2. (a) The position of a particle is given by the expression $x = 4\cos(3\pi t + \pi)$, where x is in meters and t is in seconds. Determine the frequency, period of motion, the phase constant, the position of the particle at t = 0.250 sec. 3 P.T.O. | | (b) | Derive the differential equation for damped vibration and solve the equation for critical damping. | |-----|-----|--| | 101 | (c) | What is coupled oscillation? Define normal mode of vibration, normal coordinates and normal frequency of a coupled system. | | 3. | (a) | In Newton's Rings experiment the diameter of 5 th dark ring is 0.336 cm and the diameter of 15 th dark ring is 0.680 cm. Find the radius of the planoconvex lens if the wavelength of light used is 6850 Å. | | | (b) | Describe with necessary theory and experiment to determine the refractive index of transparent liquid by using Newton's ring. | | | (c) | Prove that energy is conserved in interference phenomena. 2 | | 4. | (a) | Distinguish between the Fresnel and Fraunhoffer diffraction. 3 | | | (b) | What is a zone plate? Show that zone plate acts like a convex lens. 2 | | | (c) | Consider a diffraction grating of width 5 cm with slit width 0.0001 cm separated by a distance of 0.0002 cm. Wavelength of light used is 5.5×10^{-5} cm. What is corresponding grating element and the total number of lines in grating? Find also the highest order of spectrum. | | 5. | (a) | State Brewster's law and hence prove that the angle between the reflected and refracted ray is 90°. | | | (b) | What is retardation plate? Distinguish between quarter wave plate and half wave plate. | | | (c) | Describe how polarized light can be obtained with help of Nicol prism. 4 | | 6. | (a) | Prove the transverse nature of electromagnetic waves. 4 | | | (b) | State and prove Poynting's theorem. How does it describe the conservation of energy in electromagnetic field? | | 7. | (a) | A ray of ultraviolet light of wavelength 3000 Å falls on a surface of a metal whose work function is 2.28 eV. This ejects an electron. What will be the | | | | velocity of emitted electron? | - (b) If $(x) = Ae^{-m\omega x^2}/h$, find the expectation values of momentum and position. 4 - (c) State Heisenberg's uncertainty principle. Give the physical significance. 3 - 8. (a) What is potential step? How does quantum physics differ from classical physics in potential step problem? - (b) What is wave function? Give the physical interpretation of wave function. 3 (c) A beam of electrons of energy 15 eV is incident at the boundary of a step potential of height 5 eV. Find the fraction of the beam reflected and transmitted.