Registration No.:			
Total number of printe	d pages – 2		

B. Tech

BSCM 2102 (Old)

Second Semester (Back) Examination - 2013

MATHEMATICS - II

BRANCH: ALL

QUESTION CODE: B490

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

- What is the condition for existence of a solution for a system of linear equations?
- Define eigen value and eigen vector of a matrix. (b)
- Check whether the vectors (2, 5, 0), (5, 3, 8), (8, 6, 3) in \mathbf{R}^3 are linear (C) independent or not.
- Define symmetric matrix, skew symmetric matrix (d)
- What do you mean by eigenspace of a mainty (e)
- Find the projection of a = (5, 4, 2) over $b \neq (3, 2, 1)$. (f)
- Prove that the diagonal elements of a Hermitian (q)
- Prove that curl(gradf) = 0. (h)
- Evaluate $\int \int (\sin xy + 5) dxdy$. (i)
- State Stokes' theorm. (i)
- 2. Solve the system of equations:

$$x - y + z = 0$$

 $-x + y + -z = 0$
 $10y + 25z = 90$
 $20x + 10y = 80$

(b) Diagonalize the matrix $\begin{vmatrix} -2 & -4 & 19 \\ 0 & -1 & 2 \end{vmatrix}$.					-97			
0 -1 2	(b)	Diagonalize the matrix	-2	-4	19 .			5
			0	-1	2			

- 3. (a) Find the eigenvalue and the eigen vectors of the matrix $\begin{bmatrix} 1 & 3 & -5 \\ -6 & 13 & 3 \\ -8 & 13 & -5 \end{bmatrix}$
 - (b) Find the inverse of a matrix using Gauss Jordan method $\begin{bmatrix} 3 & 0 & -12 \\ -6 & 3 & 0 \\ 9 & 6 & 3 \end{bmatrix}$. 5
- 4. (a) Find the directional derivative of $x^2y^2z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $(x = e^t, y = \sin 2t + 1, z = 1 \cos t)$ at t = 0. 5
 - (b) A vector field is given by $\mathbf{A} = (x^2 + xy^2)\mathbf{i} + (x^2y + y^2)\mathbf{j}$. Show that the field is irrotational and find the scalar potential.
- 5. (a) Determine whether the line integral $\int 2xyz^2dx + (x^2z^2 + z\cos yz)dy + (2x^2yz + y\cos yz)dz$ is independent of the path of integration. If so, then evaluate it from (1, 0, 1) to $(0, \pi/2, 1)$.
 - (b) Evaluate $\iint_s (yzi + zxj + xyk) . ds$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant. 5

 (a) State and verify Green's theorem in the plane for $\oint (8x^2 8y^2) dx + y^2 + y^2$
- 6. (a) State and verify Green's theorem in the plane for $\oint (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary region or $f(3x^2 8y^2) dx + (2x 3y = 6)$.
 - (b) Evaluate $\iint_s f \cdot nds$ where $f = y^2i + yj + xzk$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$, z > 0.
- 7. (a) Find the Fourier series expansion of $f(x) = x^3$, $0 < x < 2\pi$.
 - (b) Find the Fourier sine integral representation of $f(x) = \sin x$, if $0 < x < \pi$ and 0 if $x > \pi$.
- 8. (a) Find Fourier cosine transform of $f(x) = e^{-x}$.
 - (b) Express the integral $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of gamma function and hence evaluate $\int_{0}^{1} x^{2} (1-x^{2})^{4} dx$.