							BS 1	1103 (New)
Total number of printed pages – 3						B. Tech		
Registration No.:								

Second Semester (Back) Examination – 2013

CHEMISTRY - I

BRANCH: ALL

QUESTION CODE: B479

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) If the wavelength of an electron is one nm, what is the velocity of the electron? [Mass of the electron = 9.1×10⁻³¹ kg]
- (b) What is Condensed or Reduced Phase rule and where it is applicable?
- (c) Explain Redox electrode with suitable examples.
- (d) Arrange Atomic Packing Fraction (APF) of crystals crystallizing in P-type (simple cubic), F-type (FCC) and I-type (BCC) in increasing order.
- (e) Write the half cell as well as the net cell reaction for Fuel Cell.
- (f) The plot of $\ln K V \sin \frac{1}{T}$ gave a straight line and the slope was found to be -1.2×10^4 K, Calculate the Activation Energy.
- (g) The half life of a reaction is halved as the initial concentration of the reactant is doubled, what is the Order of the reaction?
- (h) What is a Promoter? Can it alone act as Catalyst?
- (i) In the Phase diagram of Water System, which Curve has a negative Slope and Why?

- (j) What are the conditions for Spontaneity of a reaction at constant Volume and at constant Pressure?
- (a) Define Phases, Components and Degrees of freedom. Give appropriate examples to support the definition.
 - (b) Discuss the phase diagram of Bi-Cd system.
- (a) Which one has more bond dissociation energy: O₂ or O₂⁺? Discuss on the basis of MO theory. Also comment on the magnetic properties of O₂⁻ (Peroxide ion).
 - (b) Explain the terms Conductor, Insulator and Semiconductor on the basis of molecular orbital diagrams.6
- 4. (a) Silver crystallizes with FCC structure with a unit cell length (edge length) of 4.085 Å, Calculate the Density and the atomic radius of Silver. [At mass Ag = 107 gm/mol]
 - (b) For a reaction A + B ⇒ C + D, doubling the concentration of both the reactants increases the reaction rate by eight times and doubling the initial concentration of only B simply doubles the reaction rate. Find the Order of the Reaction.
- 5. (a) For the reaction 2 NO+Cl $_2 \leftrightarrow$ 2 NOCl, the following mechanism has been proposed:

Step.-I NO +
$$Cl_2 \xrightarrow{K_1} NOCl_2$$

Step-II NO + NOCl₂
$$\xrightarrow{K_2}$$
 2NOCl.

Show that the overall rate of reaction is : $K[NO]^2$. $[CI_2]$, where $K = \frac{K_1K_2}{K_{-1}}$ [Assume that $K_2[NO] < < K_{-1}$].

(b) Differentiate between Order and Molecularity of a Reaction.

5

4

6. (a) Show that:

$$C_p - C_v = \left[V - \left(\frac{\partial H}{\partial P} \right)_T \right] \left(\frac{\partial P}{\partial T} \right)_V$$
?

- (b) Write down the cell reaction of a storage cell during both Charging and discharging mode.
- 7. (a) From the standard reduction potentials:

$$Ce^{3+} + 3e^{-} \rightarrow Ce$$
, $E^{0} = -2.48 \text{ V}$
 $Ce^{4+} + e^{-} \rightarrow Ce^{3+}$, $E^{0} = +1.61 \text{ V}$

Calculate the reduction potential for the half cell Pt / Ce, Ce⁴⁺.

(b) Show that:

 $\begin{bmatrix} \partial \left(\frac{\mathsf{G}}{\mathsf{T}} \right) \\ \hline \partial \mathsf{T} \end{bmatrix}_{\mathsf{P}} = -\frac{\mathsf{H}}{\mathsf{T}^2}$

8. Write short notes on any two:

5×2

5

5

5

- (a) Maxwell Relations
- (b) Born-Haber Cycle
- (c) Significance of Schrodinger's wave Equation and the terms related to it
- (d) Primary and Secondary Reference Electrodes.