Registration No.:						-
2773	}		 	 	Commence Commence	1

Total number of printed pages - 4

B. Tech

BE 2101 (New)

Second Semester (Back) Examination – 2013 BASIC ELECTRONICS

BRANCH: ALL

QUESTION CODE: B477

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Why the resistance of semiconductor material decreases with increases in temperature?
- (b) Draw the output waveform the following circuit if an unit step signal is applied at input:

- (c) Add two numbers (-7, +18) in 2' complement notation
- (d) If a non-inverting amplifier has an input resistance (R_{IN}) of 1000 ohms and an feedback resistance (R_{FB}) of 2.5 kilo ohms, what is the output voltage when 1.42 mV is applied to the correct input?
- (e) Name the various logic states in an S-R flip-flop.

- (f) In a CE transistor amplifier base current is 0.01 mA and emitter current is 1 mA. Calculate the current amplification factor α and β of the transistor.
- (g) If the overall bandwidth of three identical voltage amplifier stages connected in cascade is 1000. Find bandwidth of each stage in dB.
- (h) Realize an equality detector using logic gate which gives output Y = 1, if both the inputs of the combinational circuits are same and zero for other conditions.
- (i) A waveform occupies six divisions of an oscilloscope screen when the time base is switched off. The voltage gain is set to 0.25 V/div. Calculate the rms current being tested if the resistance of the circuit is known to be 19 ohm.
- (j) Under what conditions a diode circuit act as a clipper?
- (a) Derive the expression for the closed loop voltage gain of a ve feedback amplifier if the open loop gain is and feedback ratio is B. Draw the necessary diagram.
 - (b) Find out the voltage gain of circuit shown below:

5

5

- 3. (a) With a neat block diagram explain the operation of cathode ray tube (CRT).
 - (b) Explain the ideal characteristics of an electronics instrument. 5
- 4. The transistor biasing circuit is shown below. Find
 - (i) V_{CE} , V_{B} and V_{E} 2

(iii) Draw the load line of the circuit.

3

(iv) I_{C} , I_{B}

2

5. (a) Explain the principle of an sinusoidal oscillator.

5

- (b) What are the basic requirements for oscillation in an oscillator? Also explain the physical significance of Barkhausen criteria.
- 6. (a) Simplify the following function using Boolean algebra identity:

$$F(A, B, C, D) = \sum_{m} (4, 5, 6, 7, 12, 13, 14).$$

And then, write the simplified functions in SOP form.

5

(b) Implement the following function using NOR gate only:

5

$$F(A, B, C, D) = (A + C)(B + C)(B + C)$$

7. A half-wave rectifier is to provide an average voltage of 50 V at its output. Find:

10

- (a) Draw a schematic diagram of the circuit with specification and value of the components used.
- (b) Sketch the output voltage wave shape showing value at each node.
- (c) Determine the peak value of the input voltage.
- (d) Sketch the input voltage wave shape.
- (e) The rms voltage at the input.

- (a) Frequency response of the amplifier
- (b) Diode clamper circuits
- (c) Full adder circuits
- (d) Semiconductor memory.

