Total number of printed pages – 3

B. Tech

## Second Semester Examination – 2013 DATA STRUCTURE USING 'C'

QUESTION CODE: A 433

Full Marks – 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) If the base address of a two dimensional array is 1000H, find the address of the following elements:
  - (i) (3,4)<sup>th</sup> element of the array assuming the array is storing integer type data in row major order.
  - (ii) (2,5)<sup>th</sup> element of the array assuming the array is storing floating point type data in column major order.
- (b) Define a sparse matrix. What is the best way to represent a sparse matrix?
- (c) Write the advantage of circular list over single linked list. Mention its applications.
- (d) Convert the following infix expression to its equivalent postfix expressionA\*B/C ^ 4\*(D\*(E + 5) ^ 2)
- (e) The inorder traversal of a binary tree produced sequence DBEAFC and the postorder traversal of the same binary tree produced the sequence DEBFCA. Find the sequence corresponding to the preorder traversal of this binary tree.
- (f) Construct the binary tree from the following expression:

E = a\*b - c/d + f

|    |      | and AVL tree.                                                                              |    |
|----|------|--------------------------------------------------------------------------------------------|----|
|    | (h)  | If $d_i$ is the degree of vertex $i$ in a graph with $n$ vertices and $e$ edges, then find | d  |
|    |      | the number of edges of that graph.                                                         |    |
|    | (i)  | What is topological sorting? Give an example of it.                                        |    |
|    | (j)  | Define collision. Name a collision resolution technique.                                   |    |
| 2. | (a)  | Define a circular queue. Implement the insertion operation of a circular                   | ar |
|    |      | queue using C.                                                                             | 5  |
|    | (b)  | Write a function in C for inserting a new node into a double linked list.                  | 5  |
| 3. | (a)  | Represent a stack using linked list. Write algorithm for insertion an                      | d  |
|    |      | deletion operation for this stack.                                                         | 5  |
|    | (b)  | Mention the best way to represent a single linked list in C ? Write a                      | n  |
|    |      | algorithm to delete a particular item from this list.                                      | 5  |
| 4. | (a)  | How can you represent a node of a binary tree in C? Write a C program for                  | or |
|    |      | creating a binary tree.                                                                    | 5  |
|    | (b)  | Define a binary search tree. Construct a binary search tree from the                       | е  |
|    |      | following set of input data                                                                | 5  |
|    |      | 10, 5, 25, 8, 29, 3, 30                                                                    |    |
| 5. | (a)  | Mention the relative advantages of a B <sup>+</sup> tree over other search trees. Write    | е  |
|    |      | an algorithm to insert a new element into an existing B+ tree.                             | 5  |
|    | (b)  | Give a stepwise illustration to delete a node from an existing AVL tree.                   | 5  |
| 6. | (a)  | Outline the important steps of Quick sort by taking a suitable example                     | €. |
|    |      | Mention its running time.                                                                  | 5  |
|    | (b)  | Mention the different ways to traverse a graph. How can you represent                      | а  |
|    |      | graph? Write an algorithm to traverse a graph.                                             | 5  |
| BE | 2106 | 2 Conto                                                                                    | ı. |

(g) Define an AVL tree. Compare the searching operation in binary search tree

7. (a) For the following graph, find its path matrix using Warshall's algorithm.



- (b) Define Hashing. Mention the criteria to select a hash function. Explain the different hash function to generate hash key.
- Write short notes on any **two** from the followings:

5×2

- (a) Garbage collection
- (b) Insertion sort
- (c) Operations on polynomials.