Registration No. :						
	 	L	L	 	 	

Total number of printed pages - 2

B. Tech BE 2101

Second Semester Examination - 2013

BASIC ELECTRONICS

QUESTION CODE: A 437

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is last stage of a operational amplifier and why?
- (b) How a BJT can be used as a switch?
- (c) What happens when peak amplitude of the signal is greater than DC biasing voltage of transistor? Explain with necessary diagram.
- (d) Why a time base voltage is generally given to the horizontal plate of CRO?
- (e) How a feedback amplifier will act as an oscillator?
- (f) $(24)_R + (17)_R = (40)_R$. Find the radix (R) so that the above statement is true.
- (g) If F A + BC. Then prove F + F' = 1
- h) What is the difference between flip flop and latch?
- (i) What is the difference between zenor and avalanche breakdown? Which of the among is generally used for high voltage application?
- (j) Draw the block diagram of a 8 × 1 MUX.
- 2. A silicon diode having 20 Ω internal resistance is used as halh wave rectifier. If the applied input voltage is 50 sin $100\,\pi t$ and load resistance is 800 Ω , then find
 - (a) I_m I_{dc} and I_{rms}
 - (b) Output frequency and ripple factor
 - (c) AC input and output power and efficiency.

3.	(a)	What is input impedance of an ideal CRO? Why? Explain CRO as voltmeter.
	(b)	With a neat block diagram explain the principle of a function generator. 5
4.	(a)	Draw a non inverting OPAMP amplifier circuits and derive its voltage gain assuming the open loop gain of OPAMP is A _d . 5
	(b)	What is MUX? Design the following Boolean function using MUX. 5
		F = A'B'C' + ABC + AB'C + A'BC'
5.	(a)	Simplify the following Boolean function using Boolean algebra adenitis. 5 F (A, B, C, D) = \sum m (0, 1, 3, 4, 7, 9, 11, 15).
		And then, realize the simplified functions using logic gates.
	(b)	Implement the following function using NOR gate only. 5
		F(A,B,C,D) = (A + C)(B + D).
6.	(a)	What is Barkhausen criterion? How this condition is used in oscillator? Also, mention the primary requirements to obtain steady oscillation at a fixed frequency.
	(b)	The open loop gain of an amplifier changes by 5 percents. If 10 dB negative feedback is applied, calculate percentage change of the closed loop gain.
7.	(a)	What is active, saturation and cut-off region of a transistor? Explain with necessary diagram.
	(b)	Explain the comparison of CB, CC and CE transistor amplifiers. 5
8.	Writ	e short Notes on any two : 5×2
	(a)	SR flip flop
	(b)	Static and dynamic memories
	(c)	Zenor diode as voltage regulator
	(d)	CRT