Registration No. :									
Total number of printed pages – 3							В.	Tech	
						-	RENIC	1102	(014)

Second Semester (Back) Examination – 2013 BASIC ELECTRICAL ENGINEERING

BRANCH: ALL

QUESTION CODE: B485

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) State Norton's theorem.
- (b) A resistor of 5 Ω is connected across a potential difference of 50 V. Calculate the power dissipated and energy transferred to heat in 2 minutes.

STRAL LIBO

- (c) A resistor of 25 Ω in series with a 0.5 μ F capacitor is connected across 250 V, 60 Hz. Find the current through the capacitor.
- (d) What is the time required for the capacitor voltage in a series RC circuit having $R = 3 M\Omega$ and $C=10 \mu F$, to reach 63.2% of its steady state value?
- (e) Explain the term 'Permeability' and 'coercivity'.
- (f) Why laminated core is used in a transformer?
- (g) What is the value of starting torque in case of a single phase induction motor?
- (h) Write down the expression for emf per turn induced in the windings of a single phase two winding transformer. Also define each term associated with it.
- (i) What do you understand by transients in DC circuit?
- (j) What is back emf in a DC motor? Explain.

5

- (i) Active Power
- (ii) Reactive Power
- (iii) Apparent Power.
- (b) Using star delta transformation, find the current drawn from the 20 V battery shown in Fig. 1.

Figure 1

- (a) State and explain Thevenin's theorem by giving a suitable example.
 - (b) Determine the current through the 40 ohm resistor of the network shown in Fig. 2 using Superposition Theorem.

Figure 2

- 4 (a) Explain the Principle of operation of single phase two winding transformer.

 Also explain how the auto transformer is different from the two winding transformer?
 - (b) An iron ring has a mean diameter of 40 cm and a cross sectional area of 5 cm². It is wound with a coil of 1500 turns. An air gap of 2 mm width is cut

ENTRAL LIB

in the ring. Determine the current required in the coil to produce	e a flux of
0.45 m-wb in the air gap. If the relative permeability of iron is 900	? Neglect
leakage and fringing (Assume $\mu_0 = 4\pi \times 10^{-7}$ H/m).	5

- 5. (a) Explain how the operating speed of a DC shunt motor can be changed by varying the field flux. What is the limitation of this method?
 - (b) The voltage applied to a circuit is V = 230 sin (wt + 30°) and the current through the circuit is i = 10 sin (wt 30°). Determine the parameter of the circuit, power consumed in the circuit and also the power factor of the circuit.
- 6. (a) Explain the principle of operation of a three phase induction motor. 5
 - (b) A circuit consist of a resistor of 15 Ω in series with an inductor of 0.25 H. If the frequency of supply is 50 Hz, calculate the conductance and susceptance of the circuit.
- 7. (a) Explain the principle of operation of a PMMC type instrument by drawing a neat diagram? Also write down its advantages and disadvantages. 5
 - (b) A PMMC instrument gives a reading of 25 mA when the potential difference across its terminal is 75 V. Calculate:
 - (i) The shunt resistance for a full scale deflection corresponding to 150 A.
 - (ii) The series resistance for a full scale reading with 600 V.
- 8. (a) Explain the transmission of electrical energy from a thermal power plant to a domestic consumer.
 - (b) Explain the principle of power generation in a nuclear power plant with the help of block diagram.