Registration No.:									
Total number of printed pages – 3								В.	Tech
•								BS	1102

Second Semester Regular Examination – 2015 PHYSICS – I

BRANCH(S): AEIE, AERO, AUTO, BIOTECH, CHEM, CIVIL, CSE, EC, EEE, EIE, ELECTRICAL, ETC, FASHION, IT, MECH, MM, MME, PLASTIC

QUESTION CODE: J 292

Full Marks - 70

CENTRA)

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Write down the equation of motion of a forced oscillator?
- (b) What is logarithmic decrement?
- (c) Find the speed of a longitudinal wave propagating in a medium of density 6 x 10³ kg/m³ and bulk modulus 1.2 x 10⁸ N/m².
- (d) Distinguish between the interference produced due to division of amplitude and division of wave front.
- (e) Define absent spectra?
- (f) How do you separate a unpolarised light from circularly polarized light?
- (g) Define divergence of a vector field in terms of integrals.
- (h) State Stokes theorem.
- (i) Find the wave function for a system represented by the Eigen functions ψ_1, ψ_2, ψ_3 having probabilities ½ ,1/3, 1/6 respectively.
- Set up the time independent Schrödinger equation for a one dimensional harmonic oscillator.

2.	(a)	Starting from the differential equation of a damped oscillator, write the solution for under damped oscillatory motion. Graphically show the variation of amplitude with time. Mention the condition for critical damping
	(b)	The maximum amplitude of forced damped oscillator is 2.5 cm. What will be the maximum amplitude if damping constant and magnitude of driving force are doubled?
	(c)	Discuss coherent superposition of N waves having same frequency and a constant phase difference between successive waves.
3.	(a)	Describe Fresnel's biprism method for determination of the wavelength of light.
	(b)	In Newton's ring arrangement the radii of nth bright rings with an air film and liquid film are 1.2 mm and 1.0 mm respectively. Calculate the refractive index of the liquid.
	(c)	Show that the radii of the Fresnel's half period zones are proportional to the square root of natural numbers.
4.	(a)	Describe the formation of diffraction pattern due to plane diffraction grating. What particular spectra would be absent if the width of the transparencies and opacities of the grating are equal?
	(b)	Mention the similarities and differences between a zone plate and a convex lens.
5.	(a)	Describe the construction of a Nicol prism. Explain how it produces polarized light.
	(b)	Critical angle in certain substance is 30°. What is the polarizing angle of the substance?
6.	(a)	State Poynting theorem. Explain how the Poynting vector explains the energy flow.
	(b)	Derive a relation between magnitudes of electric vector and magnetic vector.

- (c) Magnetic vector potential for current network is given by $\vec{A} = \hat{i} \times y^2 + \hat{j} yz^2 + \hat{k} zx^2$, find the magnetic induction at (1,1,1). Find a unit vector along magnetic induction at this point.
- 7. (a) A wave function ψ (x) is given by ψ (x) = $A_n \sin \frac{2n\pi x}{L}$ in region $0 \le x \le L$. Find the normalization constant and normalized wave function
 - (b) Using uncertainty principle prove that ground state energy of harmonic oscillator is n

 Ω
 - (c) A stream of electrons strike a potential energy step of height 0.04 eV. Calculate the fraction of electrons reflected if energy of the incident electrons is 0.05 eV.
- 8. (a) What is physical meaning of wave function in quantum mechanics? 4
 - (b) Find out the eigen functions and represent them graphically for a particle in an one dimensional box of width 'a'.
 - (c) An X ray beam of wavelength 3 Å is Compton scattered by electrons. Evaluate the Compton shift of a beam scattered at an angle 60°.