Registration No. :												
Total number of printed pages – 3										В.	Tech	
•											RS	1104

Second Semester Regular Examination – 2015 MATHEMATICS – II

BRANCH: AEIE, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, EC, EEE, EIE, ELECTRICAL, ETC, FASHION, IT, MANUTECH, MECH, MINERAL, MINING, MM, MME, PLASTIC, TEXTILE

QUESTION CODE: J 217

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks of the rest.

Answer the following questions :

2×10

- (a) Write the existence theorem of Laplace equation.
- (b) Find the Inverse Laplace transform of $\frac{3w}{s^2(s^2+9w^2)}$
- (c) Find the Laplace transform of an 't-step function.
- (d) Explain convergence of a Fourier series.
- (e) What is the importance of half range series?
- (f) What is the physical significance of divergence, how it is related to the Laplacian?
- (g) Find $\Delta^2 f$, where $f = e^{x^2 y^2} \cos 2xy$
- (h) Prove that div(curl v) = 0

- (i) Evaluate $\iint (2\sin xy + 3y) dxdy$ along the straight line x + y = 1.
- (j) State Stoke's theorem
- 2. (a) Solve the integral equation $y(t) = 1 \int_{0}^{t} (t + x) y(x) dx$ using Laplace transform.
 - (b) Using Laplace equation , solve the differential equation $y'' 5y' + 6y = 4e^t$, 0 < t < 2, and 0 if $t \perp 2$ with y(0) = 1, y'(0) = -2. 5
- 3. (a) Solve the equation by the transform method: $\frac{dy}{dt} + 2y + \int_{0}^{t} y dt = \sin t, \ y(0) = 0, \ y'(0) = 1$
 - (b) Find the Fourier sine series expansion of f(x) = x, $0 < x > \Pi$ and Πx , $\Pi < x < 2\Pi$
- 4. (a) Using Fourier integral representation, show that

$$\int\limits_{0}^{\infty} \frac{\cos wx + w \sin wx}{1 + w^{2}} \, dw = \begin{cases} 0, & \text{if} \quad x < 0 \\ \pi/2, & \text{if} \quad x = 0 \\ \pi e^{-x}, & \text{if} \quad x > 0 \end{cases}$$

- (b) Find the Fourier series expansion of $f(x) = \Pi \sin \Pi x$, $0 < x \le 1$.
- 5. (a) Find the Fourier sine transform of $f(x) = e^{-|x|}$, hence evaluate

$$\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx$$

- (b) Find the acute angle between the surfaces $xyz^2 = 3x + z^2 \text{ and } 3x^2 y^2 + 2z = 1 \text{ at the point } (1, -2, 1).$
- (a) Find the directional derivative of xyz² + xz at (1,1,1) in the direction of the normal to the surface 3xy² +y + z at (0,1,1)
 - (b) Find the scalar potential of $f = (6xy + z^3)I + (3x^2 z)j + (3xz^2 y)k$. 5

5

5

- (a) If F = [y-2x,3x + 2y] is velocity of a fluid, then find the circulation of 'F' around a circle in the xy-plane with centre at origin and radius 5.
 - (b) Determine whether the line integral $\int 2xyz^2dx + (x^2y^2 + z\cos yz)dy + (2x^2yz + y\cos yz) dz \text{ is independent of the path of integration. If so, then evaluate it from (1,0,1) to <math>(0,\Pi/2,1)$.
- 8. (a) Find the surface integral $\iint F$.ndA, where $F = [x^2, e^y, 1]$, 5 S: x + y + z = 1, $x \ge 0$, $y \ge 0$, $z \ge 0$.
 - (b) Verify Gauss divergence theorem for a vector field defined by $F = [y, x, z^2]$ the cylindrical region S given by $x^2 + y^2 = a^2$; z = 0 and z = h.