		BIET MAI	IN CAMI GUNUP			IOMC	OUS,			
Registration No:	"angue"									
Total Number of Pages	:2			1	l	l			1	
	B.TECH							.2018		
End Semester Examination-III Semester										
BBSBS3030-DIGITAL LOGIC DESIGN (Regulations 2017)(Common to CSE & IT Branches of Engineering)										
Time : 3 Hours Maximum : 100 Marks Question Code:271412 Answer ALL Questions										
		PART-A	A (10 X	2=20	Mark	s)				
1. (a) Give the decimal value of binary 10010. A. 610 B. 910 C. 1810 D. 2010						[CO1][PO2]				
(b) Which of the following is the most widely used alphanumeric code for computer input and output?						[CO1][PO1]				
A. Gray B. ASCI	I C. Parity	D. EBCI	DIC							
 (c) Which of the following expressions is in the sum-of-products (SOP) form? a. (A + B)(C + D) b. (A)B(CD) c. AB(CD) d. AB + CD 						[CO2][PO1]				
(d) What logic function is the sum output of a half-adder?A. OR B. NOR C. exclusive-OR D. exclusive-NOR							[CO2][PO1]			
(e) A flip-flop hasA. one stable state B. no stable states C. two stable states D. none of the above						[CO3][PO1]				
 (f) The terminal count of a modulus-11 binary counter is A. 1010 B. 1000 C. 1001 D. 1100 						[CO3][PO1]				
(g) Which of the following is a type of shift register counter?A. Decade B. Binary C. Ring D. BCD							[CO3][PO1]			
(h) How many address bits are needed to select all memory locations in the 16K X 1 RAM?							[CO4][PO2]			
A. 10 B. 12 C.										
(i) A type of digital circuit technology that uses bipolar junction transistors isA. TTLB. CMOSC. LSID. NMOS						[CO4][PO1]				
(j) Which of the following is the fastest logic?A. TTL B. ECL C. CMOS D. LSI								[CO5][PO1]		
	PAI	RT-B (10) X 2=20	0 Marl	ks)					
2.(a) Find the radix of the	number svs	tem wher	e 24 + 1	7 = 40).					[CO1][PO2]
(b) State De Morgan's law?							[CO1][PO1]			
(c) Draw the truth tables of 3-input Universal Logic Gates.								[CO1][PO1]		
(d) Implement the following Boolean expression with X-OR and AND gates. F = AB'CD' + A'BCD' + AB'C'D + A'BC'D									[CO2][PO3]	
(e) Convert the following expression in canonical sum of products: Y = AC + AB + BC								[CO2][PO1]		
(f) What is a shift register? Explain the principle of 4-bit parallel-in parallel-out shift register.								[CO3][PO1]		
(g) If the initial counts of	-					quend	ces of	the co	ounter?	[CO3][PO1]
(h) What is the difference between Mealy and Moore models?								[CO3][PO1]		
(i) Explain how a single 2 x 4 decoder can be used to construct a 4 x 4 RAM.(j) What is 'Fan in' and 'Fan out' of the integrated logic circuits?								[CO4][PO3] [CO5][PO1]		

PART-C (4 X 15=60 Marks)

3. (a) (i) Convert In a tabular form, write the "2421" code and "xcess-3" code of decimal digit "0 to 9". What are the special properties of these codes?	[7][CO1][PO1]
 (ii) Carry out the following additions: (i) (+13, -11) using 1's complement notation. (ii)(-15, +9) using 2's complement notation. 	[8][CO1][PO2]
(or) (b) (i) Convert the decimal number 4.532x10 ⁷ to a single-precision floating-point	[7][CO1][PO2]
binary number.	[/][001][102]
(ii) Establish the following identities of Boolean algebra	[8][CO1][PO1]
(i) $A + AB = A$ (ii) $(A + B)(A + C) = A + BC$	
4.(a) (i) Obtain the truth table of the following function $(xy + z) (y + xz)$ and express in Sum-of-minterms and Product-of-maxterms.	[7] [CO2][PO1]
(ii) Simplify the following function using Boolean algebra identity. F (A, B, C, D) = S m (4, 5, 6, 7, 12, 13, 14). And then, write the simplified	[8][CO2][PO1]
functions in POS and SOP form.	
(or) (b) (i) Simplify the following Boolean function using a four variable K-map : F (A, B, C, D) = S m (0, 1, 3, 4, 5, 7, 9, 11, 15). And then, realize the simplified	[7][CO2][PO3]
functions using logic gates. (ii) Simplify F (A, B, C, D) = ABC + BCD + AD using K-map.	[8][CO2][PO1]
5.(a)(i) What is race around conditions? How it is avoided	[7][CO3][PO1]
(i) Using master slave Flipflop? (ii)Using edge triggering?	
(ii) Write short notes on Master slave JK flipflop. (or)	[8][CO3][PO1]
 (b)(i) Explain how a JK and SR flipflop can be constructed using D flipflop. (ii) Design a sequential circuit with two D flipflops A and B and one input X. When X = 0, the state of the circuit remains same. When X = 1, the circuit goes through the state transition from 00 to 01 to 11 to 10 d back to 00 and repeats. 	[7][CO3][PO3] [8][CO3][PO3]
 6.(a)(i) Describe the techniques used in Address Multiplexing in DRAM. (ii) How many 32K x 8 RAM chips are needed to provide a memory capacity of 256 K bytes? How many lines of the address must be used to access 256K bytes? How many of these lines are connected to the address inputs of all chips? (or) 	[7][CO4][PO1] [8][CO4][PO2]
 (b) (i) Draw the diagram of the 4 x 4 RAM. (ii) A 3-input majority circuits produces the output as '1' when the number of 1's are more than the number of 0's at the input. Implement it using ROM. 	[7][CO4][PO3] [8][CO4][PO3]