Registration No:												
Total Number of Pages:	3		I.		·	·					1	
	B.7	Е	nd Se BCE	meste EPC30	r Exa 10- N	minati Iechai	ATION on-III nics of	Seme Solid	ester Is	2018		
Time: 3 Hours	,	(.	_	aximu	ım : 1	00 Ma	il Engi irks iestion		ng)	Ques	tion Cod	e:191712
			PAR	T-A ((10 X	2=20	Mark	(\mathbf{s})				
1. (a) Hooke's law holds g (a)proportional limit	_	-	nt (c)	Elasti	c limi	t (d)p	lastic	limit				[CO1] [PO1]
(b) The materials having (a) ideal materials (b)										tical r	naterials	[CO1] [PO1]
(c) During a tensile test was 8 tonnes and are of specimen is (a) 4 tonnes/cm ² . (b)	ea of c	ross-s	sectio	n at ne	eck wa	as 0.5	cm^2 .	Ultim	ate te	nsile s		[CO1] [PO2]
(d) Wherever the bendin (a)zero (b)also max	_											[CO2][PO1]
(e) Maximum bending n $a)\frac{wl^2}{4} \qquad b)\frac{w}{8}$					earryir	ıg a u	niform	ıly dis	tribut	ed loa	d is	[CO2][PO1]
(f) The most common w a)keeping the width b)keeping the depth c)varying both width d)none of the above	ay of k unifor unifor	keepir m and m an	ng the I vary	beam	e dept	h	streng	gth is	by			[CO2][PO1]
(g) In I-section of beam developed	subjec	cted to	o tran	sverse	shear	r force	S the	maxi	mum	shear	stress is	[CO4][PO1]
a) at the centrc) at the botto				flang	ge.		t the tone o	-	_	of top	flange	
(h) The torsional rigidit a)maximum twist in c)minimum twist in	the sh	aft b)max	imum	shear	stress	in the	shaft				[CO4][PO2]
(i) A loaded colums fail a)stress due to direct			ess du	e to be	ending	g c)bo	th a ar	ıd b	d)non	e of th	ne above	[CO4][PO2]
(j) For the same materia a) less than	_		_		-			_		a soli	d shaft	[CO4][PO1]

PART-B (10 X 2=20 Marks)

2. (a)	State the principle of superposition?	[CO1][PO1]
(b)	Define thermal stress and thermal strain.	[CO1][PO1]

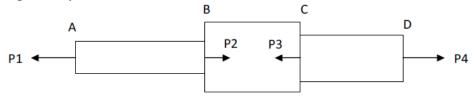
(c) What is Mohr's stress circle? Explain its significance. [CO4][PO1]

(d) Draw the S.F.D and B.M.D for a cantilever beam subjected to concentrated load of WkN at the free end. [CO2][PO2]

(e) What do you understand by point of inflection? Explain with a neat sketch. [CO2][PO1]

(f) What do you mean by shear stress in beams? [CO3][PO2]

(g) What are the assumptions in the theory of simple bending? [CO3][PO2]


(h) Define section modulus ? State its importance. [CO3][PO2]

(i) Define 'crippling load' and 'slenderness ratio' of a column? [CO5][PO1]

j) Explain the assumptions made in the Euler's column theory [CO4][PO1]

PART-C (4 X 15=60 Marks)

3a (i) A member ABCD is subjected to point loads P1, P2, P3 and P4 as shown. Calculate the force P2 necessary for equilibrium if P1= 45 kN, P3 = 420 kN, P4 = 120 kN. Determine the total elongation of the member assuming the modulus of elasticity to be $2.05 \times 10^5 \, N/mm^2$. The length and cross sectional area of AB, BC and CD are 1000mm, 500mm, 800mm and $500mm^2$, $2000mm^2$, respectively.

(ii) What is a strain rosette ?Name the different types of it ?

(or

[5][CO1][PO1]

[10][CO1][PO2]

b. (i). A steel tube of 30 mm external diameter and 20 mm internal diameter encloses a copper rod of 15 mm diameter to which it is rigidly joined at each end, If at a temperature of 10°C there is no longitudinal stress, calculate the stresses in the rod and tube when the temperature is raised to 200°C. Take E for steel and copper as $2.1 \times 10^5 \ N/mm^2$ and $1 \times 10^5 \ N/mm^2$ respectively. Take $\alpha_s = 11 \times 10^{-6} \ per^{\circ}$ C and $\alpha_c = 18 \times 10^{-6} \ per^{\circ}$ C

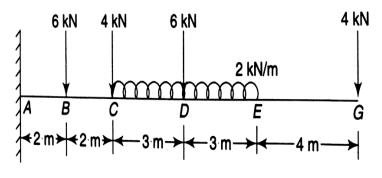
[10][CO1][PO2]

(ii) Draw the stress versus strain diagram of mild steel and show and discuss on the salient points in it

[5][CO1][PO1]

(i). Draw the SFD and BMD diagram for a simply supported beam of uniformly varying load whose intensity is zeo at left end and w/unit run at the right end support.

[5][CO2][PO1]


varying load whose intensity is zeo at left end and w/unit run at the right end support.

(ii) A cantilever of 4m

[10][CO2][PO2]

span carries loads of 6kN, 4kN, 6kN and 4kN at 2m, 4m,7m and 4m respectively from the fixed end. It also has a uniform distributed load of 2kN/m as shown in figure. Draw the shear force bending and moment diagrams.

4a

b. (i) A loaded beam is as shown below. Draw its S.F and B.M diagram.

(ii) A cantilever of length 2m carries a uniformly distributed load of

2.5kN/m run over the whole length and a point load of 2kN at a distance of 1m from the free end. Draw the SF and BM diagrams for the cantilever.

5a (i) Prove the relation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$

[7][CO3][PO1]

[8][CO3][PO1]

[10][CO3][PO1]

(ii) A beam is of T-section as shown in figure is simply supported over a span of 4m and carries a uniformly distributed load of 1.7kN/m run over the entire span. Determine the maximum tensile and compressive stress.

(or)

b. (i) A laminated wooden beam 10cm wide and 15cm deep is made up of three 5×10 cm

wide planks glued together to resist longitudinal shear. The beam is simply supported over a span of 2m. If the allowable shearing stress in the glued joint is $0.45 \text{ MN/}m^2$ find the safe concentrated load that the beam may carry at its centre.

peam subjected to [5][CO3][PO1]

(ii) Calculate the slope and deflection of a simply supported beam subjected to uniformly varying load whose intensity is w/unit run at the right end support and zero at the left end support

6a. (i) Derive the Euler crippling load for a vertical strut with both ends are hinged, acted upon by an axial load P.

, [7][CO4][PO1]

(ii) A solid shaft transmits 100 kW at 60 rpm. Determine the diameter of the shaft if the shear stress is not to exceed 75MPa. If the shaft is replaced by a hollow shaft whose internal diameter is 0.6 times external diameter, while length, material and the maximum shear stress are the same, find the percentage saving in weight

[8][CO4][PO1]

(or)

- b. (i) Derive the relation for a circular shaft when subjected to torsion as given [5][CO4] [PO1] below $\frac{T}{I} = \frac{\tau}{R} = \frac{C\theta}{L}$
 - (ii) What is critical load to avoid buckling? Determine the critical load for a long slender bar clamped at one end, pinned at the other, and loaded by an axial compressive force applied at the pinned end