

GIET Main Campus (Autonomous) Gunupur-765 022

				Reg.No.:										
B.TECH. DEGREE EXAMINATION-NOV-DEC.2018 End Semester Examination BMEPC3030-Introduction to Physical Metallurgy and Engineering Materials (Regulations 2017)(Mechanical Engineering)														
	Time : 3 Hours			Maximum : 100 Marks Answer ALL Questions				Question Code:351012						
			PART A	A - $(10 \times 2 = 20)$) Mai	·ks)								
1.	(a)	a) Volume occupieb) Volume occupiec) Total volume of	of a crystal structured by particles to toted by particles to the d by particles to the funit cell to volume and by voids to that b	tal volume of un at by voids coccupied by pa	nit ce							[C	O1]	[PO1]
	(b)	Miller indices for (a) (100) (b) (110) (c) (111) (d) None	Octahedral plane in	cubic crystal								[C	O1]	[PO1]
	(c)	Stainless steel is so (a) High strength (b) High corrosion (c) High ductility (d)Brittleness	o called because of a resistance	its								[C	O1]	[PO1]
	(d)	Austenite phase in a. is face centered b. has magnetic ph c. exists below 72' d. all of the above	ase	brium diagram								[C	02]	[PO1]
	(e)	Which transformaa. Bainite transforb. Pearlite transforc. Both a. and b.d. None of the above	mation	nucleation of fe	orrite	phase	?					[C	02]	[PO1]
	(f)	Which one of the a) Austenetising b) Annealing	following is not equ	ilibrium heat tr	eatm	ent						[C	03]	[PO1]

		c) Normalizingd) Precipitation						
	(g)	 Which one of the following is not correct a) Martensite has a BCC structure b) Austenite has FCC structure c) Martensite is a solid solution of carbon in BCC iron d) The martensite which is formed during quenching is too brittle 	[CO3] [PO1]					
	(h)	Materials are softened by a) Carburizing b) Normalizing c) Tempering d) Anneling	[CO3] [PO1]					
	(i)	Multimode graded index fibers use incoherent source only. State whether the following statement is true or false. [CO4] [PO1] a) True b) False						
	(j)	Refractive index of materials is approximately equal to square root of (a) electrical permittivity (b) magnetic permeability (c) electrical permittivity x magnetic permeability (d) None	[CO4] [PO1]					
		PART B - (10 X 2 = 20 Marks)						
2.	(a)	Define Lattice. Define space lattice (or) crystal lattice	[CO1] [PO1]					
	(b)	 b) Obtain the relation between the cell edge and the atomic radius in the case of a BCC unit cell. [CC [PO1] 						
	(c)	What is an isomorphous system?	[CO2] [PO1]					
	(d)	What is meant by eutectoid, hypo eutectoid, hyper eutectoid steel?	[CO2] [PO1]					
	(e)	What is the application of Lever rule?	[CO2] [PO1]					
	(f)	What are the types of Annealing?	[CO3][PO1]					
	(g)	What is Critical Cooling Rate (CCR)?	[CO3][PO1]					

(h) What is Carbonitriding?	[CO3][PO1]
(i) Differentiate thermoplastics and thermosetting plastics.	[CO4][PO1]
(j) What are the factors that control the strength of ceramics?	[CO4][PO1]

PART C - (4 X 15 = 60 Marks)

- 3. (a) (i) Define packing factor and obtain the packing factor for the Hexagonal Closed packing factor with a neat diagram. [8][CO1] PO2]
 - (ii) Find the number of atoms associated in each BCC, FCC and HCP unit cells. Calculate the equilibrium number of vacancies per cubic meter for copper at $100^{\circ}C$. The energy for vacancy formation is 0.9 eV/atom; the atomic weight and density for copper are 63.5 g/mol and 8.45 g/cm3, respectively. Take Avogadro's number as $6.023x10^{23}$ atoms/mol. $k = 8.62 * 10^{-5} eV/atom$. [7][CO1][PO2]

(or)

- (b) (i) Aluminum has FCC structure and its density is $2700 \frac{kg}{m^3}$. Calculate the unit cell dimension and atomic diameter. (Aw of Al =26.98 g/mol). [7][CO1][PO2]
 - (ii) What is meant by crystal defects? Describe in detail the point, line and surface defects and Burger vector. [8][CO1][PO1]
- 4. (a) (i) Draw neatly the phase diagram of a system in which the two components are completely soluble in the liquid state and partly soluble in the solid state having terminal solid solutions α and β . Label the phase diagram with proper labeling. Show the liquidus curve, solidus curve and solvus curves in the system. Show the eutectic temperature and the composition of eutectic alloy. [8][CO2][PO2]
 - (ii) Define non-equilibrium cooling. What is the impact of this cooling? [7] [CO2][PO1]

(or)

- (b) (i) Show and describe in details the development of microstructure on slow cooling in different regions of Pb-Sn phase diagram.
 [7][CO2][PO2]
 - (ii) For a 0.35 wt% C plain carbon steel at a temperature just below the eutectoid temperature determine: i. Fraction of total ferrite and cementite phase.
 ii. Fraction of the pro-eutectoid ferrite and pearite.
 iii. Fraction of eutectoid ferrite.

- 5. (a) (i) What is meant by Normalizing? List the objectives of normalizing. [7][CO3][PO1]
 - (ii) What is yield point phenomenon? Describe it with a neat sketch of load-elongation curve of low carbon steel. [7][CO3][PO1]

(or)

- (b) (i) The tensile stress on a single crystal of BCC iron lies along [010] direction. If the tensile stress of 52 MPa is applied, Calculate the resolved shear stress along (110) plane and in [-1 1 1] direction. If slip occurs on (110) plane and [-1 1 1] direction and CRSS is 30 MPa, calculate the applied tensile stress to cause yielding.
 [8] [CO3][PO2]
 - (ii) Explain the concept of wok hardening or strain hardening and illustrate with the help of stressstrain diagram. [7][CO3][PO1]
- 6. (a) (i) Explain the working principle of Ruby Laser with proper diagram. [8] [CO4][PO1]
 - (ii) Explain fibre optic communication system with a block digram. [7][CO4][PO1]

(or)

- (b) (i) The fraction of the nonreflected radiation that is transmitted through 5mm thickness of a transparent material is 0.95. If the thickness is increased to 12 mm what fraction of light will be transmitted?
 [7][CO4][PO2]
 - (ii) What are Optical fibres? And explain the structure and working principle of optical fibre with neat diagram.[8][CO4][PO1]