

		_					
Reg.No.:		20	20				

B.TECH. DEGREE EXAMINATION-NOV-DEC-2018

End Semester Examination BBSBS3040-Engineering Mathematics-III (Regulations 2017)

Time: 3 Hours

Maximum: 100 Marks Answer ALL Questions **Question Code:10812**

		PART A - $(10 \times 2 = 20 \text{ Marks})$	
L	a)	The modulus and argument of $z = \sqrt{3}$ is	[CO1][PO1]
		a) $\sqrt{3}$	
		b) $-\sqrt{3}$	
		c) 3	
		d) -3	
	b)	An Analytic function with constant modulus is	[CO1][PO1]
		a) real	
		b) imaginary	
		c) constant	
		d) none of the these	
	c)	The order of zero of the function $f(z) = (z-2)^3$ is	[CO2][PO1)
		a) 2	
		b) 3	
		c) 0	
		d) 4	
	d)	The negative powers of the Laurent series is called	_ (CO2][PO1)
		a) Analytic part	
		b) principal part	
		c) Taylor's part	
,		d) none of these	

e)	The Residue of $\frac{e^{2z}}{z^2}$ is	[CO2][PO1]
	a) 3	
	b) 0	
	c) -1	
	d) 2	
f)	Newtn's forward interpolation is used for	[CO3][PO1]
	a) equal interval	
	b) unequal interval	
	c) both the intervals	
	d) none of these	
g)	The order of error of simpson's one third rule is	[CO3][PO1]
	a)) order h4	
	b) order h3	
	c) order h2	
	d) none of these	
h)	Two events are Mutually Exclusive if they have	[CO4/PO1]
	a) independent b) dis joint	
	c) common element	
	d) non of these	/
i)	The value of correlation coefficient lies between a) O to 1	[CO4/PO1]
	b) b) -1 to 0	
	c) c) -1 to 1	
	d) d) none of these	
j)	The mean and variance of distribution are equal.	[CO4/PO1]
	a) Bionomial	
	b) poision	
	c) Normal d) uniform	

PART B - (10 X 2 = 20 Marks)

2	a)	Solve $z = \sqrt[4]{-i}$	[CO1][PO2]
	b)	Verify whether the function is Analytic or not. $F(z) = z^3$	[CO1][PO1]
	c)	Define Laurent series of a function f(z).	[CO2][PO1]
	d)	Find the Residue at the singular point $f(z) = \frac{z}{z^2+9}$	[CO2][PO1]
	e)	Discuss the nature of singularity of $\frac{1}{cosz-sinz}$	[CO2][PO1]
	f)	What is rounding off error? Explain with an example	[CO3][PO1]
	g)	Define Newton's forward difference interpolation formula.	[CO3][PO1]
	h)	Prove that $P(A \cup B) = P(A) + P(B) - P(AB)$	[CO4][PO2]
	i)	Define conditional probability	[CO4][PO1]
	j)	Find the mean of the random variable x , its probability function is	
		$f(x) = {3 \choose x}$, x=0,1,2,3	[CO4/PO2]

PART C - $(4 \times 15 = 60 \text{ Marks})$

3 a i) Verify whether the function satisfies harmonic . if yes find its conjugate harmonic $v=tan^{-1}\frac{y}{x}$. [CO1][PO2] [7]

ii) Evaluate
$$\oint_c \frac{z^2 dz}{z^4 - 1}$$
, $c: |z + 1| = 1$

[CO1][PO2] [8]

(OR)

b i) Find the line integral over the curve $\oint_{\mathcal{C}} z \, dz$; c: $x^2 = y$ from 0 to 1+i [CO1][PO2] [8]

ii) Evaluate $I = \int Rez^2 dz$, where 'c' is the boundary of square with vertices 0, 1,1+i,i .in clockwise. . [CO1][PO2] [7]

4 a i) Find the Laurent series of $\frac{z^2}{(z-1)(z-2)}$, valid in the region $1 \le |z| \le 2$.

[CO2][PO2] [8]

ii) Evaluate $\oint \frac{e^z + z}{z^3 - z} dz$ c: $|z| = \frac{\pi}{2}$ by residue theorem.

[CO2][PO2][7]

(OR)

b i) Evaluate $\oint \frac{z+1}{(z^2+4)^2} dz$, $c: |z| = \frac{2\pi}{3}$ by residue theorem.

[CO2][PO2] [8]

ii) Solve the integral $\int_{-\infty}^{\infty} \frac{1}{(z^2+2)^2} dz$.

[CO2][PO2] [7]

5 a i) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezodial Rule with h=0.2.

[CO3][PO2] [7]

ii) Find y(1.2) by modified Euler's method given $\frac{dy}{dx} = \frac{2y}{x} + x^3$, y(1)=0.5

[CO3][PO2] [8]

(OR)

b i) Calculate y(0.1),y(0.2) using RK method given that

$$\frac{dy}{dx} = \frac{2xy}{1+x^2} + 1$$
, $y(0) = 0$

[CO3/PO2] [8]

ii) Find the real roots of $x^3 + x - 5 = 0$, upto four significant figure by iteration method. [CO3][PO2] [7]

6 a i) A random variable X has the following probability function

[CO4/PO2][8]

Values of X:

2

4

P(x):

L 3

 $3 k^2 k$

a) Find k b) Compute P(x < 4) c) Compute p (x > 3) d) Find p(1 < x < 4) ii) Find the regression line X on Y in the points(1,-3), (2,-11), (3,1), (4, 18), (5,61),(6,11) [CO4/PO2][7]

(OR)

b i) Find the regression line X on Y in the points(1,-3), (2,-11), (3,1), (4, 18), (5,61),(6,11) [CO4][PO2][8]

ii) Apply the maximum likelihood method to the Normal distribution with $\mu \text{=} 0$.

[CO4][PO2][7]