

GIET Main Campus (Autonomous) Gunupur-765 022

GIET Main Campus (Autonomous) Gunupur-765 022

- e) Which of these are poset?
- a) (Z, =)
- b) (Z, \neq)
- _{c)} (Z, \geq)
- d) None of these

f) If (G, .) is a group, such that $(ab)2 = a2 b2 \forall a, b \in G$, then G is a/an

- a) commutative semi group
- b) abelian group
- c) non-abelian group
- d) none of these

[CO3][PO1]

[CO2][PO1]

g) A self-complemented, distributive lattice is called [CO3][PO1] a) Boolean algebra b) Modular lattice c) Complete lattice d) Self dual lattice h) If every element of a group G has its own inverse, then G is [CO3][PO1] a)abelian b) finite c) normal d) infinite i) A minimal spanning tree of a graph G is....? [CO4][PO1] a. A spanning sub graph b. A tree c. Minimum weights d. All of above j) The chromatic number of the graph K_7 is [CO4][PO1] a) 5 b) 7 c) 8 d) None of these

 $\mathbf{2}$

GIET Main Campus (Autonomous) Gunupur-765 022

PART B \cdot (10 X 2 = 20 Marks)

a)	Write the truth table of $(p \lor q) \rightarrow (p \land q)$	[CO1][PO1]
b)	Determine the truth table of $(p \lor \neg q) \rightarrow \neg q$	[CO1][PO1]
c)	Find out the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$	2 [CO2][PO1]
d)	Define lexico graphic order	[CO2][PO1]
e)	Let 'S' be a set. Determine greatest and least elements of the pos [CO2][PO1]	set $(P(S), \subseteq)$
f)	Define abelian group	[CO3][PO1]
g)	Define cyclic group and generator of cyclic group	[CO3][PO1]
h)	Show that the intersection of two normal subgroups is normal	[CO4][PO1]
i)	Define Bi-partite graph and give an example	[CO4][PO1]
j)	Define Spanning Tree	[CO4][PO1]

PART C - (4 X 15 = 60 Marks)

3 a i) Show that the hypothesis "it is not sunny this afternoon and it is colder than yesterday" " we will go to swimming only if it is sunny" " if we do not go to swimming then we will take a canoe trip" and " if will take a canoe trip then we will be home by sunset" leads to the conclusion "we will be home by sunset" [CO1][PO2][8]

ii) Show that $2^n > n^3$ for $n \ge 10$ by method of induction. [CO1][PO2][7]

(OR)

b i) Prove that $\sqrt{2}$ is an irrational number by method of contradiction.

[CO1][PO2][7]

ii) Prove that $3+3.5+3.5^2+\ldots+3.5^n = \frac{3(5^{n+1}-1)}{4}$ whenever n is a non-negative integer by method of induction.

[CO1][PO2][8]

- 4 a i) Find the solution of the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ with initial conditions $a_0 = 2, a_1 = 5, a_2 = 15$ [CO2][PO2][8]
 - ii) Find the Hassae diagram of the poset (p{a,b,c},⊆). Where p{a,b,c} is the power set of {a,b,c}. And also find the least and greatest elements of it.

[CO2][PO2][7]

(OR)

b i) Use Warshall's algorithm to find the transitive closure of the relation $R = \{(b,c), (b,e), (c,e), (d,a), (e,b), (e,c)\}$ defined on the set $\{a, b, c, d, e\}$.

[CO2][PO2][8]

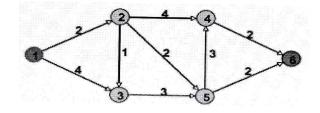
- ii) Use generating function to solve the recurrence relation $a_k = 3a_{k-1} + 4^{k-1}$ with int ial condition $a_0 = 1$ [CO2][PO2][7]
- 5 a i) State and prove Lagrange's theorem of finite groups.
 - ii) Show that the kernel of the homomorphism of groups is normal subgroup

[CO3][PO2][7]

[CO3][PO2][8]

(OR)

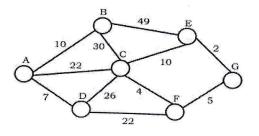
- b i) State and prove demorgan's property of distributive lattice [CO3][PO2][7]
 - ii) Let $E(x_1, x_2, x_3) = \overline{(x_1 \lor x_2) \lor (x_1 \land x_3)}$ be a Boolean expression. Find its disjunctive and conjunctive normal forms [CO3][PO2][8]



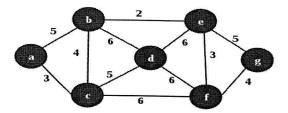
GIET Main Campus (Autonomous) Gunupur-765 022

6 a i) Let G be connected planner simple graph with e edges and v vertices. Let r be the number of regions in a planner representation of G. then show that 'r = e-v+2'

[CO4][PO2][7]


ii) Find the shortest path from the vertex 1 to the vertex 6 by using Dijkstra's algorithm

[CO4][PO2][8]


(OR)

b i) Find the minimum spanning tree of the following graph by using Prim's's algorithm.

[CO4][PO2][8]

ii) Find minimum spanning tree by Kruskal's algorithm

[CO4][PO2][7]