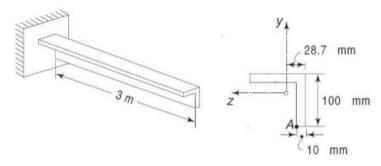
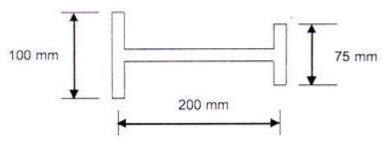

		GIE				SAUT		AOUS	,			
				GUNU	PUK	- 7650	22					
Registration No:											M. 7	ГЕСН
Total Nun										J		
	M.TECH 1 ST S	EMESTE	R RE	EGUL	AR E	XAM	INAT	ΓΙΟΝ	S, DE	CEM	BER 2018	
ADVANCED MECHANICS OF SOLIDS												
Branch: MD, Subject Code: MMDPE1044												
						ns 2018			~			
Time: 3 Hours			Max Marks : 70 Qu PART-A (10 X 2=20 Marks)						iestio	estion Code:RD18002095		
1 4	(1 f. 11		PA	ART-A	A (10	X 2=2	to Ma	rks)				
	a. State the reasons for unsymmetrical bending.b. Write down Winkler-Bach formula. Name each term. Where it is used?											
	c. Which two types of failure of slender columns are possible?d. Write the assumption made in deriving the Winkler batch formula for curved beam?											
1	ferentiate betwee				-		ate?					
								ubject	ed to l	oendir	ng?	
g. What type of stress will be generated when a thin plate is subjected to bending?h. How Euler's beam is differing from Timoshenko beam?												
i. Exp												
	satisfied for a beam to bend without twisting?											
j. Wh	at is resilience?											
						0 Marl						
		nswer any		-				-				
2 a)Derive an equation of radial stress for thick cylinder subjected to internal pressure P1 and							re P1 and	[5]				
	al pressure P2?	· .			C (1	• 1	1. 1	1.	. 1.	• ,	1	[7]
	e an equation of o		ential	stress	for th	ick cy	linder	subje	ected t	o inte	rnal pressure	[5]
	d external pressu lever of T-section		120m	m w 7()	wah. 1	20	m w 20		200	m long and	
												[5]
E=2000	$\frac{1}{3}$ N/m ² and the de	flection a	t is free end but inclined at an angle 45° to the total on at free end is not to exceed 2 mm, determ							ine	icai. Ii	[5]
	aximum value of				not t	o enee	04 2 1	, u	eterm	ine.		[9]
/	tion of neutral ax		spect	to ver	tical a	xis.						
,			I.									

4.a) Find out the stresses at point A and B.



b. Why the trapezoidal cross-section of a crane hook is preferred over a rectangular cross-section? [4]


[6]

5 a) A beam of equal-leg angle section, shown in figure below, is subjected to its own weight. [6] Determine the stress at point A near the built-in section. It is given that the beam weighs 1.48N/cm. Given:.,Izz=180cm4Izy=106.57cm4

- b) Briefly discuss the theorem of virtual work.
- 6 a) Find the deflection, bending moments and maximum stresses for a simply supported circular [5] plate of radius R carrying a uniform load of intensity w, which is constant.
- b) A steel disc of uniform thickness and of diameter 400 mm is rotating about its axis at 2000 [5] r.p.m. The density of the material is 7700 kg/m3 and Poisson's ratio is 0.3. Determine the variations of circumferential and radial stresses.
- 7.a) Write the assumption made in deriving the Winkler batch formula for curved beam? [4]
- b) Find the shear center for unequal I section and the thickness of both the flanges and webs [6] are 8mm

8. Write short notes on	[5]
a) Airy's stress function	[5]
b) Unsymmetrical bending.	[5]

==0==

[4]