G	IET MAIN CAMPUS AUTONOMOUS
	GUNUPUR - 765022
Armanna C	

Registration No:

Total Number of Pages : 2

M.TECH 1ST SEMESTER REGULAR EXAMINATIONS, DECEMBER 2018 MACHINE VIBRATION

Branch: MD, Subject Code:MMDPC1020

(Regulations 2018)

Time: 3 Hours

Max Marks : 70 PART-A (10 X 2=20 Marks) Question Code: RD18002046

M.TECH

1. Answer the following questions.

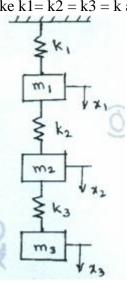
- a. What is meant by logarithmic decrement?
- b. What is basic assumption is deriving Dunkerlay's formula?
- c. What is meant by natural vibration?
- d. Compare and contrast between over damping and under damping through graphical representation?
- e. How can we make a system to vibrate in one of its natural made?
- f. What happens to the response of an undamped system at resonance?
- g. Explain the static and dynamic coupling of two degree of freedom of system?
- h. Define co-ordinate coupling and explain static and dynamic coupling through diagram.
- i. Define normal mode vibration of multi degree freedom of system?
- j. What is node? Describe with neat sketch.

PART-B (5 X 10=50 Marks)

Answer any five questions from the following.

2.	. In a forced vibration with degree of freedom=1; the exciting Force is given by F=100Sin (2 t) Newton where t is time in second stiffness constant K=500 N/m; m=100 kg, damping coefficient c=0.2N. sec/m, Determine:		
	a) natural frequency and Damping Ratio b) equation of position	[5] [5]	
3.	A rotating machine of mass 650kg, operating at a constant speed of 1500rpm, has an unbalance of 0.12kg-m. If the damping in the isolation is given by damping ratio of ε = 0.08,		
	a) Determine stiffness of the isolators so that the transmissibility at the operating speed is less than or equal to 0.15.	[5]	
	b) Determine also the magnitude of the force transmitted.	[5]	
4	For a single degree of freedom forced undamped system, stiffness is 500 N/m, mass = 10 kg and applied maximum force(F) = 40 N. The forcing function has a circular frequency of 18 rad/sec. The initial displacement is 0.01 m and initial velocity is 1 m/s. Determine :		
	a) the frequency ratio	[5]	
	b) the amplitude of forced vibration, the displacement at time(t) = 5 sec.	[5]	
5	a) Derive the fundamental equation for the lateral vibration of Beams and determine the natural frequency of a simply supported beam.	[5]	
	b) Determine the normal functions for free longitudinal vibration of a bar of	[5]	

length L and uniform cross-section. One end of the bar is fixed and the other free.



6. A harmonic motion is given by $x(t) = 10 \sin(30t - \pi/3)$ mm where t is in seconds and phase angle radians. Find

	[5]
a) frequency and the period of motion	$\begin{bmatrix} J \end{bmatrix}$
a) frequency and the period of motion,	

[5]

- b) the maximum displacement, velocity and acceleration.
- 7. a) Find the first natural frequency for the system shown in Fig. by matrix iteration method.
 - b) Draw the mode shape for the system shown in Fig. by matrix iteration method.
 [5] Take k1= k2 = k3 = k and m1 = m2 = m3 = m.

8. Write short notes on	
--------------------------------	--

a.	Seismic instrument	[5]
b.	Critical speed of shaft	[5]

==0==