Registration No:									
------------------	--	--	--	--	--	--	--	--	--

Total Number of Pages :2

B.TECH. DEGREE EXAMINATION-Nov-Dec.2018

End Semester Examination-I Semester

BBSBS 1021-Engineering Physics

(Regulations 2017)(Common to BT, CHEM., CIVIL, EE, EEE, MECH Branches)

Time: 3 Hours Maximum: 100 Marks Question Code:31312
Answer ALL Questions

PART-A (10 X 2=20 Marks)

1.				
(a) The restoring force of an oscillator is maximum at position.	[CO1][PO1]			
a. Mean b. End c. 2cm d. Infinity (b) The graph between the displacement and the velocity of a simple harmonic oscillator is	[CO1][PO1]			
a. sphere b. cylinder c. Ellipse d. cube				
(c) In case of Newton's ring experiment the rings are produced by division of	[CO1][PO1]			
(d) L A S E R stands for Light Amplification byEmission of radiation.				
a. stopping b. spontaneous c. source d. stimulated	ICONIDO 11			
(e) Example of gas lasing material is	[CO2][PO1]			
(f) The working principle of optical fibre is	[CO2] [PO1]			
a. Reflection b. Refraction c. Diffraction d. Total internal reflection				
(g) The smallest volume unit cell in a crystal structure is called as: a. primitive b. fcc c. bcc d. None	[CO3][PO1]			
(h) Electromagnetic wave travels with the speedin free space.	[CO4][PO1]			
a. 3 x 108 ms-1 b. 3 x 1010 ms-1 c. 5 x 105 ms-1 d. 7 x 106 ms-1 (i) Divergence of a vector field is a	[CO4][PO1]			
a. Scalar b. Pseudo Scalar c. Vector d. Tensor				
(j) The minimum energy required for photoelectric effect is called	[CO5][PO1]			
a. Stopping potential b. Threshold frequencyd. Work function				
PART-B (10 X 2=20 Marks)	[CO1][DO1 1			
2. (a) Show that total energy of the simple harmonic oscillator is constant.?(b) Differentiate between coherent and incoherent superposition.	[CO1][PO1] [CO1] [PO1]			
(c) What are the characteristics of a Laser beam.	[CO2] [PO1]			
(d) What is Miller Indices of a crystal plane.	[CO3][PO1]			
(e) Define Bragg's law?	[CO3] [PO1]			
(f) State Faraday's laws of electromagnetic induction.	[CO4] [PO1]			
(g) State and write Poynting theorem and justify that it explains about the conservation of	[CO4][PO1]			
electromagnetic energy? (h) State Stokes theorem.	[CO4][PO1]			
(i) Calculate the de Broglie wavelength of a neutron whose kinetic energy is 0.025ev.	[CO5][P02]			
(j) Show graphically the variation of kinetic energy with frequency of incident light in				
photoelectric effect.	[CO5][PO1]			

PART-C (4 X 15=60 Marks)

1 AK1-C (4 X 13-00 Marks)	
3. (a) (i) Discuss with a neat diagram that how interference fringes are produced in Bi-prism Experiment and derive the expression for fringe width?	[10][CO1][PO1]
(ii) How coherent sources are produced by the division of wave front in case of Newton 's ring experiment.	[5][CO1][PO1]
(or)	
(b) (i) What is an optical fiber? Discuss different parts of an optical fiber? Differentiate between the step-index and graded-index optical fibers? Discuss its advantages and disadvantages?	[10][CO1][PO1]
(ii) Give five examples of Optical Fibers used in communication?	[5][CO1][PO1]
4. (a) (i) What is Miller indices? Discuss the method to determine the Miller Indices of a crystal plane? Explain with examples.	[10][CO3][PO1]
(ii) Classify materials on the basis of band theory.	[5][CO3][PO1]
(or)	
(b) (i) Discuss the construction and properties of the reciprocal lattice.	[10][CO3][PO1]
(ii) Determine the reciprocal lattice of Simple Cubic lattice.	[5][CO3][PO2]
5. (a) (i) Write Maxwell's equations in differential as well as in integral form and state the fundamental laws from which they are derived. Magnetic monopole does not exist, justify using appropriate law	[10][CO4][PO1]
(ii) Distinguish between conduction current and displacement current.	[5][CO4][PO2]
(or)	
(b) (i) Derive the expression for electromagnetic wave equation in terms of electric field in a conducting medium using Maxwell's equations	[10][CO4][PO1]
(ii) A point source emits light with power 250 W. Find the average value of the Poynting vector at a distance of 2m from the source	[5][CO4][PO2]
6. (a) (i) Using Schrodinger's equation, discuss the case of a free particle in one dimensional potential well. Mention its energy Eigen values of the excited states	[8][CO5][PO1]
(ii) State Heisenberg's Uncertainty principle .Using Uncertainty principle prove the Non-existence of electron in Nucleus (or)	[7][CO5][PO2]
(b) (i) What is CNT? Give applications of nano particles?	[8][CO5][PO1]
(ii) Make a comparison between PVD and CVD synthesis of nano-particles.	[7][CO5][PO2]