

a) π

GIET Main Campus (Autonomous) Gunupur-765 022

B.TECH. DEGREE EXAMINATION-NOV-DEC-2018 End Semester Examination BBSBS1010-Engineering Mathematics-I (Regulations 2018) (Common to all Branches of Engineering)				
Time: 3 Hours		Maximum: 100 Marks Answer ALL Questions	Question Code:10812	
		PART A - $(10 \times 2 = 20 \text{ Marks})$		
l. (a) Stationary point	at which the function f(x, y) has neither ma	aximum nor minimum is called as— [CO1][PO1]	
	b) saddle pointc) maximumd) none of these			
(1	 a) 2 b) 1 c) -1 d) 0 	, where $z = 3x \sin 2x$	[CO1][PO2]	
(0	b) What is the order of a) Secondb) firstc) thirdd) none of these	differential equation $y'^2 + y = 0$.	[CO1][PO1]	
(d	 a) 0 b) 1 c) -1 d) none of these 	re said to be independent if their Wornskian	is not equal to ———[CO1][PO1]	
(e	 a) The value of sin nπ = a) 0 b) 1 c) -1 d) none of these 		[CO3][PO1]	
(f) The fundamental peri	od of sin2x is——	[CO3][PO1]	

GIET Main Campus (Autonomous) Gunupur-765 022

	 b) 1 c) 2π d) none of these 	
	 (g) The function f(x) = x³ is an ——function in the range (0, 3).) odd b) even c) neither odd nor even d) not defined 	[CO3][PO1]
	 (h) The absolute value of an orthogonal matrix is —— a) 0 b) 1 c) ∞ d) none of these 	[CO4][PO1]
	 (i) The determinant of a singular matrix is a) Eigne set b) eigen vector c) Spectrum d) none of these 	[CO4][PO1]
	 (j) The determinant of a singular matrix is— a) 1 b) -1 c) 0 d) none of these 	[CO4][PO1]
	PART B - $(10 X 2 = 20 Marks)$	
2.	(a) Define Euler's theorem for homogeneous functions. (b) Verify $f_{yx} = f_{xy}$ where $f = sin(2x^2 + y^2)$	[CO1][PO1] [CO1][PO2]
	(c) Define Wronskian and find the Wronskian of $y_1 = sinx$ and $y_2 = cosx$	[CO2][PO1]
	(d) Find the particular solution of $y'' + 2y = \sin 3x$	[CO2][PO2]
	(e) Define periodic function.	[CO3][PO1]
	(f) Define even and odd function.	[CO3][PO1]
	(g) Define half range sine series.	[CO3][PO1]

GIET Main Campus (Autonomous) Gunupur-765 022

(h) Prove that the diagonal elements of a skew-symmetric matrix are zero.

[CO4][PO2]

(i) Define symmetric and skew-symmetric matrix.

[CO4][PO1]

(j) Find the symmetric coefficient matrix of quadratic form for $Q = x_1^2 - 2x_1x_2 + 4x_2x_3 - 9x_3^2$ [CO4][PO2]

PART C - $(4 \times 15 = 60 \text{ Marks})$

3 a i) If
$$U = \log \frac{x^4 + y^4}{x + y}$$
 then show that $x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = 3$ [CO1][PO2] [8]

ii) Expand $f(x, y) = x^2 + xy + y^2$ in powers of (x-2) and (y-3). [CO1][PO2] [7]

(OR)

b i) Discuss the maxima or minima value of $U = x^3 + y^3 - 3axy$ [CO1][PO2] [8]

ii) If
$$U = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
; $xy \ne 0$ then prove that $\frac{\partial^2 U}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$ [CO1][PO2] [7]

4 a i) Solve
$$\frac{dy}{dx}$$
 - (1+ $\frac{3}{x}$) y = x + 2 [CO2/PO2][8MARKS]

ii) Solve
$$x^2y'' - 4xy' + 6y = 0$$
 {CO2/PO2] [7MARKS]

(OR)

b i) Solve the differential equation y'' + y = Cosecx by using variation of parameter [CO2][PO2] [8]

ii) Using Operator method Solve the differential equation $y'' + 9y = \cos 3x$

[CO2][PO2] [7]

5 a i) Find the Fourier series of $f(x) = \begin{cases} 0, & \text{if } -\pi < x < 0 \\ x, & \text{if } 0 < x < \pi \end{cases}$

[CO3][PO2] [7]

ii) Find the Fourier series of $f(x) = x^2$, $0 < x < 2 \pi$.

[CO3][PO2][8]

(OR)

b i) Find the Fourier series of
$$f(x) = \begin{cases} x, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$

[CO3][PO2] [8]

GIET Main Campus (Autonomous) Gunupur-765 022

ii) Find the Half range sine Series of $f(x) = x^2$, in $0 < x < \pi$

[CO3][PO2][7]

6 a i) Find the rank of the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

[CO4][PO2] [7]

ii) Find the Eigen value and Eigen vector of

[CO4][PO2][8]

$$\begin{pmatrix} -19 & 7 \\ -42 & 16 \end{pmatrix}$$

(OR)

b i) Find out which type of conic section is represented by Quadratic function $11 x^2 + 84 xy + 24 y^2 = 156$

[CO4/PO2][7]

ii) Diagnolize the matrix $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$

[CO4/PO2] [8]