Tota	210	r of Pages : 04 ₂₁₀ 7 th	ີ Semester Re CONTROL S` Bi Ti Ma Q		GINEER EE			B.Tech. EL7J001
Ans	210 swer Que	210 7^{ti}	ີ Semester Re CONTROL S` Bi Ti Ma Q	YSTEM ÉN RANCH : E ime : 3 Hou	GINEER EE		PE	L7J001
Ans	swer Que	210	CONTROL S BI Ti Ma Q	YSTEM ÉN RANCH : E ime : 3 Hou	GINEER EE			
		estion No.1 (Pa	Q					
	210		art-1) which is	.CODE : E	045	EIGHT from	Part-II and any	[,] TWO
Q1		² The fig	f ures in²the rig	from Part-I ght hand ^e m		licate ⁰ marks	210	210
	a) Defin	t Answer Type e sampling. How esent a sampled	is a digital sequ	uence differe	ent from sa			(2 x 10)
	c) Giver 210 i) y ii) y	$f(k) = \sum_{j=0}^{n} x(j)$ $f(k) = \sum_{j=0}^{n} x(j)$ $f(k) = e^{-ak}x(k)$	nd the Z-transfor	-		210	210	210
	i) - z ii) - f) Why i f) Why i g) How h) What i) How	the inverse Z-tra $\frac{z}{1-az^{-1}}$ is z-transform is convolution sum do you define im is zero order ho non linearities in in dead zone ar	necessary to de and convolution pulse response Id for digital sys control system	n integral are function in c tem?	e consider digital dom	nain?		210
Q2		sed-Short Ansv nput-output of sa						(6 x 8) ₂₁₀
			c(n+2)+3c(n	,	()			
		mine the Z-trans ider a transfer fu	Inction in the s-c	domain	-	sequence.		
	ii) N	210 Dbtain an equiva Aap discrete trar Compare the trar	lent discrete tra	the w plane	on with ZO		210	210
	c) Explation theoremd) Chec	in the spectrur em. k if all the roots o	n analysis of of the characteri	sampling p	rocess to	justify Shan		
	i) 5 ²¹⁰ ii) <i>z</i>	$z^2 - 2z + 2 =$ $z^3 - 0.2z^2 - 0.2$	$5z + 0.05^{\circ} = 0$	210		210	210	210

210	210	210	210	210	210	210	210

e) A feedback system is characterized by the closed loop transfer function

$$T(s) = \frac{s^2 + 3s + 3}{s^3 + 2s^2 + 3s + 1}$$

Draw a suitable signal flow graph and therefrom construct a state model of the system.
f)⁰ Consider the following matrix that represents a plant of the system that has two state variables. The initial conditions are [1, -2].

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(t); y = \begin{bmatrix} -1 & -2 \end{bmatrix} x(t)$$

- i) Determine the eigen values, and using Cayley-Hamilton's theorem compute the state transition matrix of the continuous system.
- 210 ii) Determine the output of part(i) when $t = 1 s_{10}$
 - iii) Obtain a discrete time version of the given system, and determine its state transition matrix in terms of sampling time, using linear terms only.
- g) Consider a nonlinear system described by the equation

$$\dot{x_1} = x_2$$

 $\dot{x_2} = -(1 - x_1/)x_2 - x_1$

- 210 Find the region in the state plane for which the equilibrium state of the system is asymptotically stable using Lyupunov function.
 - h) For the following closed-loop transfer function

$$\frac{Y(z)}{U(z)} = \frac{4(z^2 + 0.2z + 0.5)}{z^4 - 2.4z^3 + 2.09z^2 - 0.774z + 0.1008}$$

- i) Obtain the phase variable representation.
- 210 ii) Obtain the controller canonical representation. 210
 - iii) Obtain the observer canonical representation
- i) Consider the following state-space representation of a SISO system :

$$\begin{cases} x_1(k+1) \\ x_2(k+1) \end{cases} = \begin{bmatrix} -1.2 & -0.32 \\ 1 & 0 \end{bmatrix} \begin{cases} x_1(k) \\ x_2(k) \end{cases} + \begin{cases} 1 \\ 0 \end{cases} u(k)$$

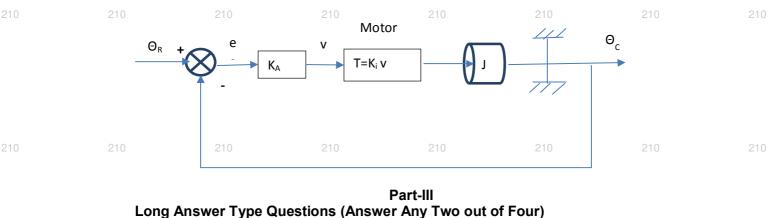
$$y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{cases} x_1(k) \\ x_2(k) \end{cases}$$
210 210

- 010
- i) Determine the steady state error.
- ii) Determine the closed loop transfer function of the above system and from it obtain the corresponding forward transfer function of a unity feedback system.
- j) For the following closed-loop transfer function

$$\frac{Y(z)}{U(z)} = \frac{(z+1)}{z^2 + 1.2 z + 0.35}$$

210

- i) Obtain the controller canonical representation.
- ii) Compute the closed loop poles.
- iii) If the closed loop poles will have to be changed to -0.6 and -0.8, determine the gain of the controller.
- k) A linear second order servo described by the equation


Determine the singular points. Construct the phase trajectory using the method of the isoclines.

210	210	210	210	210	210	210	210

210

I) The position control system as shown in figure has coulomb friction C at the output shaft. Plot the phase trajectory for a unit step input and zero initial conditions. Calculate and plot the time response of the error and find the value of the steady state error.

Given $\sqrt{(K/J)}$ =1.2 rad/sec, (C/K) = 0.3 rad where K= K_A K₁

Q3 Consider the following state-space equation
$$\begin{cases} \dot{x}_1 \\ \dot{x}_2 \end{cases} = \begin{bmatrix} -2 & -1 \\ 2 & -5 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases}$$
; (16)
 $y = \begin{bmatrix} -1 & -2 \end{bmatrix}$
With initial conditions :

$$\begin{cases} x_1(0) \\ x_2(0) \end{cases} = X(0) = \begin{cases} 1 \\ 0 \end{cases}$$

- a) Determine the Eigenvalue, and use Cayley-Hamilton's theorem to compute the state transition matrix of the continuous system.
- b) Determine the output of part (a) at t= 1 s.
- c) Obtain a discrete-time version of the given system and determine its state transition matrix in terms of sampling time, using linear terms only.
- ²¹⁰ d) Determine the output of the discrete system at t=1 s by using a sampling²period of 0.1 s.
- Q4 Consider the following open-loop transfer function of a unity feedback digital control (16) system:

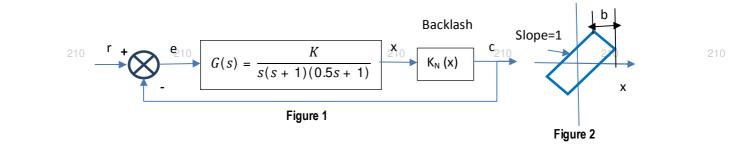
$$G(z) = \frac{K(z+1)}{(z-1)(z-0.4)}$$

- Draw a root-locus plot of this system with T= 0.1. Determine the value of K for marginal stability and its value for obtaining a maximum percentage overshoot of 20% due to step input.
 - **Q5** Consider the following state-space system :

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{cases} x_1(k) \\ x_2(k) \end{cases}$$

(1)

- a) Design a controller so that the closed loop poles are -0.6 and -0.8.
- b) Design a state estimator that is four time faster than the plant with controller.
- c) Draw a block diagram showing details of the controller and stare estimator.


210	210	210	210	210	210	210	210

∠1(

(16)

210	210	210	210	210	210	210	210

Q6 An instrument servo system used for positioning a load may be adequately represented **(16)** by Figure 1 and the backlash characteristic is given by Figure 2.

- a) Using the db gain phase analysis show that the system is stable for K=1.
- b) If the value of K is raised to 5, show that limit cycle exits.

c) Investigate the stability of these limit cycles and determine their frequency and b/X.
 Given :

210	b/X <i>K_N(X)</i> < <i>K_N(X</i>	0 1 1 0) 0 - 210	0.2 0.4 .954 0.882 (6.7° -13.4° - 210	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48 0.125 0	1.9 2.0 .064 0 69.8° -90° 210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210