0	R	210 210 Registration No :		210		210	2	210	210	210
	-									
То	tal N	umber of Pages : (2							B.Tech S7D001
0		7 210 210		Tim		BERS T CSE urs			210	210
Δ	nswe	er Question No.1 (F	Part ₋ 1) w		ODE : E		FIGHT	from P	art-II and any	
~				fro	m Part-	III.				
0		210 The fi	gures in	the right	hand n	nargin ii 210	ndicate	marks.	210	210
Q1		Short Answer Type					1/12 1		hat factorias	(2 x 10)
	a) b) c)	Let $n = p^2 q$ with p, q n is polynomial-time Which of the polyno What do you mean	equivaler mials x ² ± by primitiv	nt to comp 7 is irredu e element	uting φ(r ucible mo s? Give	i). Idulo 19? two exarr	Justify		nat factoring	
	d) e) f) g)	What is the difference What is Primality tes What do you mean What is Elliptic Curv	sting? List by Montgo es? How	the variou omery Arit it relates t	us algorit hmetic? o Finite f	hms used ields?	d for this		210	210
	h) i) j)	What is the time cor What is hensel lifting Factor number 299	and how	/ it can be ard's p-1 r	used for nethod o	polynom	ial divisi			
Q2	2 a)	Focused-Short An		e Questio				out of T	WELVE)	(6 x 8) ²¹⁰
	b)	Prove that the polynomial $x^2 + x + 2$ is irreducible modulo 3 Represent F9 as F3(θ), where $\theta^2 + \theta + 2 = 0$. Find the roots of $x^2 + x + 2$ in F9.								
	-	Represent F9 as F3 Prove that θ is a prin	nitive eler	ment of F9).					
		Let a_1, a_2, \dots , an be r 2integers u_1, u_2, \dots, u_n Let p be a prime > 3	with the p	roperty that	at u₁a₁ +	$u_2a_2 + \cdot \cdot$	• + u _n a _n	_ = d.	210	210
	e) f)	(mod 12). Find all the points at			•		modulo	p ii anu c	лпупр=тт	
	, g)	The ellipse $X^2 / a^2 +$ Let n = p ² q with p,	$Y^2 / b^2 = 1$	with a, b r	eal and p	positive, t				
		polynomial time Conclude that if u >			ne					
)	i) j)	² Explain Algebraic co Describe the proce example?				210 actorizatio		olynomia	ls with one	210
	k) I)	Describe AKS test v Describe pollard rho one example briefly	o method			reate alg	jorithms	over finit	e fields with	
			•	<i>(</i> -	Part-III			_,		
0 Q3	8	Long Answer Type Compute all the sim $5x \equiv 3 \pmod{47}$,			-				210	210 (16)

210			210	210	210	210	210	210	210
	Q4	a) b)	(a) C1 : $y^2 + 4y$ (b) C2 : $y^2 + 4y$	ich of the followin y = $x^3 - 3x - 6 de$ y = $x^3 - 3x + 6 de$ complete factorize	efined over Q. efined over F7.				(10) (6)
210	Q5		${}^{2 \mbox{+}\! 0} \gamma$ has a root	nitive element of in िFq if and only continued fractior	$if_{2}gcd(r, q - 1) =$	210	e that the polync	omial x ^r 210	(10) 210 (6)
210	Q6	b) c) d)	Cryptography Index calculus CFRAC methor Schoof's point ² Hensel lifting	od counting algorith	1m 210	210	210	210	4 x 4) 210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210