210	210	210	210	210	210	210	210
	Registra	tion No :					
210	Total Nu	mber of Pages: 7 ¹	th Semester Ba	210 ck Examinatio SI DESIGN	210 n 2018-19	210 B.Tech PCEC4401	210
		BRAN	NCH : AEIE, BIO ELECTRICA Tim	OMED, CSE, E \L, ETC, IEE, I ⁻ le : 3 Hours			
210	210	210 Inswer Question The figu	²¹⁰ Q.C No.1 which is		210 nd any FIVE from indicate marks		210
210	a) b) ²¹⁰ d) e)	Answer the follow What is standard co What is Design Hie What is Twin-tub po When the channel With the help of a length (<i>L</i>), lateral d	ell-based design prarchy? rocess? Why it is is said to be pincl neat sketch sho	called so? hed off? ¹⁰ w and explain v			210
210	f) g) ²¹⁰ h) i) j)	MOS transistor. What is the minimit that it can operate Design a resistive $V_{OL} = 0.3 V$. Given $50 \ \mu A/V^{2^{-10}}$. Take R Why the pull-up ne n MOS logic? Implement a 2-inpu In a DRAM what is instead of V_{DD} ?	properly? load inverter usir parameters for the $L = 10 \text{ K}\Omega$ and V_{L} twork is replaced to NAND gate usin	ng enhancement he MOS transist $p_D = 5 V^{210}_{}$ I with a single p ng pass transisto	t n MOS as a drive or are: V _{T0} = 1V, ₂₁₀ MOS transistor in p or logic.	$u_n C_{ox} = 210$	210
210	210	Calculate the zero silicon-gate transis $N_D = 10^{20} \text{ cm}^{-3}$, g charged positive io the gate doping is implant doses N_i	tor that has well ate oxide thickn ns per unit area n^+ and explain	I doping $N_A = 3$ less $t_{ox} = 22$ Å, at the oxide-silic why it is approp	3×10^{17} cm ⁻³ , gate , and 2×10^{10} cm on interface. Assumptiate. Calculate	doping ⁻² singly me that the ion-	210
210	b)	of 0.4V. 210 Explain the impo fabrication with the	•	•	CMOS integrated	circuit (5)	210
210	₂₁₀ b)	Compare two tech fielding scaling a particular, show and dissipation, and por Calculate ₂ the diffus contacted n MOS tr at V _{DD} = 1.8 V characteristics are	nd (ii) the cons nalytically by usi wer density are a sion parasitic cap ransistor in a 180 . Assume the	stant power sund ng equations ho ffected in terms pacitance <i>C_{db}</i> of nm process wh substrate is g	pply voltage sca w the delay time of scaling factor ,S f the drain of a ur en the drain is at rounded. The tr	ling. In ,power hit-sized (5) O V and ansistor	210

210	210	210	210	210	210	210		210
		0.33 <i>f</i> F/ μ m, M_{JSW} =	$M_{JSWG} = 0.10$ a	nd ψ_{0} = 0.75 V a	t room temperatu	ıre.		
210	Q4 a) 210	$nMOSV_{TO,n}=0.6v$ µ $pMOSV_{TO,p}=-0.7v$ Calculate the noise The power supply v	$J_nC_{ox}=60\mu A/V^2$ $\mu_pC_{ox}=25\mu A/V^2$ margins and the oltage is VDD=3	(W/L) _n =8 (W/L) _p =12 switching thresh 3.3V.	old (V _{th}) of this ci		(5)	210
210	b) 210	K' _n ,(W/L) _n =10/1 and a) Find high -to	V _{DD} =5V.The inv o low propagation high propagation dimension of t	verter drives a loa on delay? on delay? he PMOS transis	d capacitance of	150fF. th are to	(5)	210
	Q5 a) b)	Draw the circuit diag computing the funct Draw and explain w logic. Why edge trig	ion $Y = \overline{(A + B + B)}$ orking of CMOS	$\overline{C} \cdot D$ using CM SR latch using p	OS technology.		(5) (5)	
210	Q6 ₂₁₀ a)	Discuss the charge techniques used i problems. State as	(5) (5)	210				
	b) With the help of a neat circuit diagram show the implementation of the logic function $Y = \overline{(A \cdot B \cdot C) + (D \cdot E)}$ using dynamic CMOS logic.							
210	Q7	Draw the circuit strust strategy. Explain v operation and "write	oltage levels ir	the SRAM cel	I at beginning o	of "read"	(10)	210
	Q8	Write short answer VLSI Layout Design Leakage currents in <i>Gajski's Y-chart</i> Built-In Self-Test (B	Rules DRAM and SR/				(5 x 2)	
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210

210 210 21) 210	210	210	210	210
------------	-------	-----	-----	-----	-----