	210	210	210	210)	21	10	210		
F	Regis	tration No :								
	-	l								
Tot		mber of Pages : 03						DI	B.Tech ET7J008	
	210	²¹⁰ 7 th	Semester Re	210 gular Exa			10 3-19	210	_1/5000	
			TICAL COMM	UNICATIC	ON NET					
				NCH : ECE me : 3 Hoi						
				x Marks :						
							_ ^			
An	210	r Question No.1 (Pa		compulso rom Part-I		EIGH	T fror	n Part-II and an	y TWO	
		The fig	ures in the rig			ndicate	e mar	ks.		
		C	· · ·		•					
Q1		Short Answer Type	Questions (An	Part- I swer All-1(ור				(2 x 10)	
S.	a)	Why silicon is not us	•							
	b)	A beat length of 15 c	m is observed ir	n a typical s	ingle mo	de fibe	r, whei	n light of 1 µm is		
	210	Iaunched into it. Calculate the modal birefringence.210210Define MFD.? How it is related to V parameter?210210								
	c) d)	What is Rayleigh sca				ise Sca	attering			
	e)	A step index single	•							
	- ,	difference of 0.27%, for this fiber at λ =1.3	and a core radi							
	f)	Two compatible mul		•		-	•			
	210	end faces are perfect joint is showing a los		ermine the	retractive	e index		tiber core ₁ t the		
	g)	Compare and contra		ace and edg	ge emittin	g LED	s.			
	h)	A p-n photodiode responsivity at this w	has quantum e	-		-		m.Calculate the		
	i)	A digital fiber optic ⁸ .Calculate the require	link operating			res a r	maxim	um BER of 10 ⁻		
	j) 210	Write the fundament methods for the mea				and dis	persio	n. What are the		
				Part- II						
Q2		Focused-Short Ans	••	•		-			(6 x 8)	
	a)	How skew rays diff respect to skew rays ray.								
	2b)	Derive the expression through optical fiber			an electr	romagn	etic w	ave propagating		
	₽₩y	unough optical liber		equation.						
	c)	Define the normaliz	ed frequency f	or an optio			•			
		Define the normaliz determination of the	ed frequency frequency frequency frequency	or an option	ropagatin	ng withi	n a ste	ep index fiber.		
		Define the normaliz determination of the A step index fiber in 1.45 and a core diar	red frequency f number of guide air has a nume neter of 50 µm.	or an option of modes pre- erical apertu Determine	ropagatin ure of 0.1 the norm	ng withi 16, a c nalized	n a ste ore re freque	ep index fiber. fractive index of ency for the fiber		
		Define the normaliz determination of the A step index fiber in	ed frequency f number of guide air has a nume neter of 50 μm. length of 0.95 μ	or an option of modes pre- prical apertu Determine m is transm	ropagatin ure of 0.1 the norm	ng withi 16, a c nalized	n a ste ore re freque	ep index fiber. fractive index of ency for the fiber		

210	210	210	210	210	210	210

	d)	Compare stimulated Brillouin and stimulated Raman scattering in optical fibers, and indicate the way in which they may be avoided in optical fiber communications. The threshold optical powers for stimulated Brillouin and Raman scattering in a
0	210	single-mode fiber with a long 8 μ m core diameter are found to be 190 mW and 1.70 W, respectively, when using an injection laser source with a bandwidth of 1 GHz. Calculate the operating wavelength of the laser and the attenuation in decibels per kilometer of the fiber at this wavelength.
	e)	 A 10 km optical link consists of multimode step index fiber with a core refractive index of 1.48 and a relative refractive index difference of 1%. Estimate, i. The delay difference between the slowest and fastest modes at the fiber output;
0	210	 ii. The rms pulse broadening due to intermodal dispersion on the link; iii. The maximum bit rate that may be obtained without substantial errors on the link assuming only intermodal dispersion; iv. The bandwidth–length product corresponding to (c).
	f)	The measured optical output powers from ports 3 and 4 of a multimode fiber FBT coupler are 45.0 μ W and 50.0 μ W respectively. If the excess loss specified for the device is 0.6 dB, calculate the amount of optical power that is launched into port 1 in order to obtain these output power levels. Hence, determine the insertion losses
0	210	between the input and two output ports, as well as the split ratio for the device. When the specified crosstalk for the coupler is -45 dB, calculate the optical output power level that would be measured at port 2 when the above input power level is maintained.
	g)	With suitable schematic diagram explain the distributed feedback laser in comparison with the Fabry–Pérot laser.
	h)	Explain the concept of quantum-dot and quantum wire lasers and describe their operation in comparison with conventional injection laser diodes.
0	2 i))	Derive expressions for the SNR of both PIN and APD considering all noise sources.
	j)	A digital optical fiber communication system operating at a wavelength of 1 μm requires a maximum bit-error-rate of 10 ⁻¹⁰ . Determine: i. The theoretical guantum limit at the receiver in terms of the guantum efficiency
		 The theoretical quantum limit at the receiver in terms of the quantum efficiency of the detector and the energy of an incident photon; The minimum incident optical power required at the detector in order to achieve the above bit-error-rate when the system is employing ideal binary signaling at 10 Mbit s⁻¹, and assuming the detector is ideal.
0	210 k)	 A silicon p-h photodiode has a quantum efficiency of 65% at a wavelength of 0.8 μm. Determine: i. The mean photocurrent when the detector is illuminated at a wavelength of 0.8 μm with 5 μW of optical power ii. The rms quantum noise current in a post-detection bandwidth of 20 MHz
		iii. The SNR in dB, when the mean photocurrent is the signal.
	I)	Discuss with the aid of suitable diagrams the measurement of dispersion in optical
0	210	fibers. Consider both time and frequency domain measurement techniques. Pulse dispersion measurements are taken on a multimode graded index fiber in the time domain. The 3 dB width of the optical output pulses from a 950 m fiber length is 827 ps. When the fiber is cut back to a 2 m length the 3 dB width of the optical output pulses becomes 234 ps. Determine the optical bandwidth for a kilometer length of the fiber assuming Gaussian pulse shapes

210 2	210	210	210	210	210	210	210

Part-III Long Answer Type Questions (Answer Any TWO out of FOUR)

						,,	,				
210	Q3		Explain the concept of electromagnetic modes in relation to a planar optical waveguide. Discuss the modifications that may be made to electromagnetic mode theory in a planar waveguide in order to describe optical propagation in a cylindrical fiber. Describe single mode fiber and their mode field diameter. What are the propagation modes in them?								
	Q4				tenuation me	chanism in or	ntical fiber	communicat	on using relevant	(16)	
210		210	schematic			-	210	210	210	(10)	210
	Q5		With suita	ble diagr	am explain th	e structure of	surface a	nd edge emit	ter LED.	(16)	
	Q6		Describe diagram.	the opt	ical receiver	operation a	nd its pe	erformance ι	ising appropriate	(16)	
210	;	210		210	210		210	210	210		210
210	:	210		210	210		210	210	210		210
210	:	210		210	210		210	210	210		210
210	;	210		210	210		210	210	210		210
210	:	210		210	210		210	210	210		210