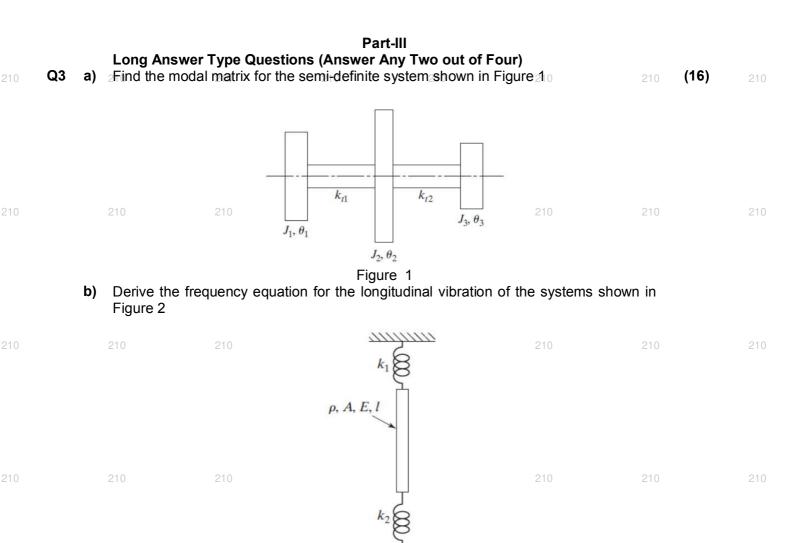
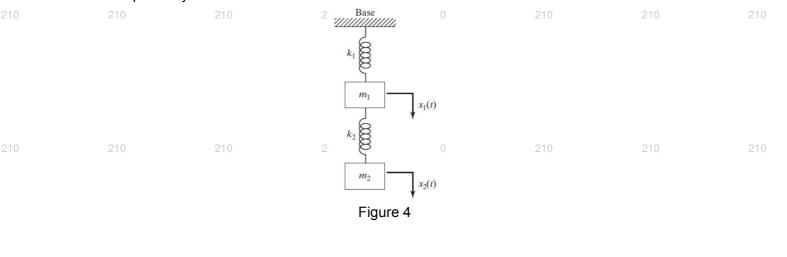
	R	egistration No: -	
			10
Tota	al Nu	umber of Pages : 03	B.Tech PME7J001
		7 th Semester Regular Examination 2018-19 MECHANICAL VIBRATION BRANCH : MECH Time : 3 Hours	
		210 210 2 Max Marks: 100 210 2	10
۸n	6 \W0	Q.CODE : E059 r Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and	any TWO
AII	3116	from Part-III.	
		The figures in the right hand margin indicate marks.	
		Part- I	
Q1	2)	Short Answer Type Questions (Answer All-10) ² Differentiate between oscillation and vibration with suitable example. ¹⁰	(2 x 10)
	a) b)	What is meant by a semi-definite system	
	c) d)	Why viscous damping is preferred in analysis over others? What is meant by vibration isolation? Why is it necessary?	
	e)	What is mode shape? Explain with an example of a two degree of freedom system	
	f)	Why a dynamic vibration absorber is used? What is advantage of using dampe	d
	g)	dynamic vibration absorber? What is logarithmic decrement?	
	h)	Explain new opining made another ine matarial nequency of a undumped eyetem.	10
	i) j)	What is meant by the term magnification factor? How a tuned dynamic vibration absorber is different from a unturned one?	
		Part- II	
Q2		Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(6 x 8)
	a) b)	Give a brief note on different types of damping used in vibration Derive the Expression for amplitude of vibration, phase lag and magnitude of	of
	,	impressed force for single degree of freedom damped forced vibration system 2	10
	c)	Explain the working principle of frequency measuring instruments with neat sketch.	_
	d)	Explain Frahm's dynamic vibration absorber and plot the frequency response of dynamic absorber system.	а
	e)	Derive the differential equation of motion of a spring mass system by (a) Newton second law of motion, (b) D'Alembert's principle.	Ś
	f)	Explain the frequency response curve of a forced vibration system with harmon excitation.	ic
	g)	From first principle justify how the reciprocating unbalance problem may be treated a rotating unbalance problem.	10 S
	h)	Obtain the absolute and relative amplitude ratio of a forced vibration system with bas excitation.	е
	i)	Explain influence coefficients. What is the advantage of using these coefficients?	
	j)	Explain the term mode shape taking an example of 2 degree of freedom system.	
	k)	Derive the frequency equation of lateral vibration of fixed-fixed beam from fire 210 210 210 210 210 210 210 210 210 210	st 10
	I)	What is Rayleigh's quotient?	

210	210	210	210	210	210	210	210




Figure 2

Q4 ²Figure 3 shows a steel stepped cantilever beam. The steps have square cross (16) ²¹ sections of size 10 cm X 10 cm, and 5 cm X 5 cm each with a length of 125 cm each. Assuming the Young s modulus as E= 215 GPa and the density 8000 kg/m³, for the material of the beam, determine the fundamental natural frequency of bending vibration of the beam using Rayleigh s method. Assume the deflection of the beam as $\begin{pmatrix} & \pi \\ & \pi \end{pmatrix}$

210 210 210 210	0
-----------------	---

210	210	210	210	210	210	210	210

- Q5 A vibration pickup has been designed for operation above a frequency level of 100 Hz (16) without exceeding an error of 2%. When mounted on a structure vibrating at a frequency of 100 Hz, the relative amplitude of the mass is found to be 1 mm. Find the suspended mass of the pickup if the stiffness of the spring is 4000 N/m and damping is negligible.
 - **Q6** Find the natural frequencies of the system shown in Figure 4, with $m_1 = m$, $m_2 = 2m$, (16) $k_1 = k$, $k_2 = 2k$. Determine the response of the system when k = 1000 N/m, m = 20kg, and the initial values of the displacements of the masses m1 and m2 are 1 and -1, respectively.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210